Odpowiedź:
2 ) f '(x) = ( 3 x² - 3)*(x[tex]^4 + x^{2} + 1) + ( x^3 - 3 x + 2)*( 4 x^3 + 2 x) =[/tex] ...
4 ) f(x) = ( 2 x[tex]^{-0,5} -\sqrt{3} )*(4 x^{4/3} + \frac{1}{3} x^{-1/3})[/tex]
f '(x) = 2*(-0,5) x[tex]^{-1,5}*( 4 x^{4/3} + \frac{1}{3} x^{-1/3}) +[/tex] [tex]+ (2*x^{-0,5} - \sqrt{3} )*( \frac{16}{3} x^{1/3} - \frac{1}{9} x^{- 4/3}) = ...[/tex]
5 ) f(x) = [tex]( x^{1/3} + 2 x )*( 1 + x^{2/3} + 3 x )[/tex]
f '(x) = ( [tex]\frac{1}{3} x^{ -2/3} + 2)*( 1 + x^{2/3} + 3 x) + ( x^{1/3} + 2 x)*( \frac{2}{3} x^{-1/3} + 3) = ...[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
2 ) f '(x) = ( 3 x² - 3)*(x[tex]^4 + x^{2} + 1) + ( x^3 - 3 x + 2)*( 4 x^3 + 2 x) =[/tex] ...
4 ) f(x) = ( 2 x[tex]^{-0,5} -\sqrt{3} )*(4 x^{4/3} + \frac{1}{3} x^{-1/3})[/tex]
f '(x) = 2*(-0,5) x[tex]^{-1,5}*( 4 x^{4/3} + \frac{1}{3} x^{-1/3}) +[/tex] [tex]+ (2*x^{-0,5} - \sqrt{3} )*( \frac{16}{3} x^{1/3} - \frac{1}{9} x^{- 4/3}) = ...[/tex]
5 ) f(x) = [tex]( x^{1/3} + 2 x )*( 1 + x^{2/3} + 3 x )[/tex]
f '(x) = ( [tex]\frac{1}{3} x^{ -2/3} + 2)*( 1 + x^{2/3} + 3 x) + ( x^{1/3} + 2 x)*( \frac{2}{3} x^{-1/3} + 3) = ...[/tex]
Szczegółowe wyjaśnienie: