[tex]A = (x_A, y_A) \\B = (x_B, y_B)\\[/tex]
|AB| = [tex]\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}[/tex]
c)
P = (1 + √2, 3√5), R = (2 + √2, 2√5)
xp = 1 + √2
yp = 3√5
xr = 2 + √2
yr = 2√5
Korzystając ze wzoru na odległość między punktami:
|PR| = [tex]\sqrt{(1+\sqrt{2} - (2 + \sqrt{2} ))^2 + (3\sqrt{5} - 2\sqrt{5})^2 } =[/tex]
[tex]\sqrt{(1+\sqrt{2} - 2 - \sqrt{2} ))^2 + (3\sqrt{5} - 2\sqrt{5})^2 } = \\\sqrt{(-1)^2 + (\sqrt{5})^2 } = \sqrt{1+5}= \sqrt{6}[/tex]
d)
M = (3 - √2, 1 - 3√3), N = (3, 1 + √3)
xm = 3 - √2
ym = 1 - 3√3
xn = 3
yn = 1 + √3
|MN| = [tex]\sqrt{(3-\sqrt{2}-3)^2 + (1-3\sqrt{3}-(1+\sqrt{3}))^2 } =[/tex]
[tex]\sqrt{(\sqrt{2})^2 + (1-3\sqrt{3}-1-\sqrt{3})^2 } = \\\sqrt{(\sqrt{2})^2 + (2\sqrt{3})^2 } = \sqrt{2 + 4*3} = \sqrt{2 + 12} = \sqrt{14}[/tex]
#SPJ1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
|PR| = √6
|MN| = √14
Odległość między punktami
[tex]A = (x_A, y_A) \\B = (x_B, y_B)\\[/tex]
|AB| = [tex]\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}[/tex]
Obliczenia
c)
P = (1 + √2, 3√5), R = (2 + √2, 2√5)
xp = 1 + √2
yp = 3√5
xr = 2 + √2
yr = 2√5
Korzystając ze wzoru na odległość między punktami:
|PR| = [tex]\sqrt{(1+\sqrt{2} - (2 + \sqrt{2} ))^2 + (3\sqrt{5} - 2\sqrt{5})^2 } =[/tex]
[tex]\sqrt{(1+\sqrt{2} - 2 - \sqrt{2} ))^2 + (3\sqrt{5} - 2\sqrt{5})^2 } = \\\sqrt{(-1)^2 + (\sqrt{5})^2 } = \sqrt{1+5}= \sqrt{6}[/tex]
d)
M = (3 - √2, 1 - 3√3), N = (3, 1 + √3)
xm = 3 - √2
ym = 1 - 3√3
xn = 3
yn = 1 + √3
Korzystając ze wzoru na odległość między punktami:
|MN| = [tex]\sqrt{(3-\sqrt{2}-3)^2 + (1-3\sqrt{3}-(1+\sqrt{3}))^2 } =[/tex]
[tex]\sqrt{(\sqrt{2})^2 + (1-3\sqrt{3}-1-\sqrt{3})^2 } = \\\sqrt{(\sqrt{2})^2 + (2\sqrt{3})^2 } = \sqrt{2 + 4*3} = \sqrt{2 + 12} = \sqrt{14}[/tex]
#SPJ1