Odpowiedź:
Szczegółowe wyjaśnienie:
3.
a.
3x²-5x+2=0
D=R
Δ=b²-4ac=25-4*3*2=1, √Δ=1
[tex]x_1=\frac{5-1}{2*3} =-\frac{4}{6} =-\frac{2}{3}[/tex] v [tex]x_2=\frac{5+1}{2*3} =\frac{6}{6} =1[/tex]
b.
-2x²-4x+3=0
Δ=16-4*(-2)*3=16+24=40, √Δ=2√10
[tex]x_1=\frac{4-2\sqrt{10} }{2*(-2)} =\frac{4-2\sqrt{10}}{-4} =-1+\frac{1}{2} \sqrt{10}[/tex] v [tex]x_2=\frac{4+2\sqrt{10} }{2*(-2)} =\frac{4+2\sqrt{10}}{-4} =-1-\frac{1}{2} \sqrt{10}[/tex]
4.
x+6≤2x²
2x²-x-6≥0
Δ=1-4*2*(-6)=1+48=49, √Δ=7
[tex]x_1=\frac{1-7}{2*2} =-\frac{6}{4} =-1\frac{1}{2}[/tex] [tex]x_2=\frac{1+7}{2*2} =\frac{8}{4} =2[/tex]
a>0 oraz y≥0
_______ ___________
-------------|------------|------------------------>
[tex]-1\frac{1}{2}[/tex] \_____/ 2
x∈(-∞, [tex]-1\frac{1}{2}[/tex]>∪<2, +∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
3.
a.
3x²-5x+2=0
D=R
Δ=b²-4ac=25-4*3*2=1, √Δ=1
[tex]x_1=\frac{5-1}{2*3} =-\frac{4}{6} =-\frac{2}{3}[/tex] v [tex]x_2=\frac{5+1}{2*3} =\frac{6}{6} =1[/tex]
b.
-2x²-4x+3=0
D=R
Δ=16-4*(-2)*3=16+24=40, √Δ=2√10
[tex]x_1=\frac{4-2\sqrt{10} }{2*(-2)} =\frac{4-2\sqrt{10}}{-4} =-1+\frac{1}{2} \sqrt{10}[/tex] v [tex]x_2=\frac{4+2\sqrt{10} }{2*(-2)} =\frac{4+2\sqrt{10}}{-4} =-1-\frac{1}{2} \sqrt{10}[/tex]
4.
x+6≤2x²
D=R
2x²-x-6≥0
Δ=1-4*2*(-6)=1+48=49, √Δ=7
[tex]x_1=\frac{1-7}{2*2} =-\frac{6}{4} =-1\frac{1}{2}[/tex] [tex]x_2=\frac{1+7}{2*2} =\frac{8}{4} =2[/tex]
a>0 oraz y≥0
_______ ___________
-------------|------------|------------------------>
[tex]-1\frac{1}{2}[/tex] \_____/ 2
x∈(-∞, [tex]-1\frac{1}{2}[/tex]>∪<2, +∞)