Odpowiedź:
a) [tex]log_{16} 64 = log_{4^2} 64 = 0,5 log_4 64 = 0,5*3 = 1,5[/tex]
lub [tex]log_{16} 64 = log_{2^4} 2^{6} = \frac{1}{4} *6*log_2 2 = \frac{6}{4} *1 = 1,5[/tex]
b) [tex]log_ 7 1 = 0[/tex] bo [tex]7^0 = 1[/tex]
c ) [tex]log_{13} 1 = 0[/tex] bo [tex]13^0 = 1[/tex]
d ) [tex]log_{16} 128 = log_{2^4} 2^7 = \frac{1}{4} *7 *log_2 2 = \frac{7}{4} *1 = 1,75[/tex]
e ) [tex]log 1 = log_{10} 1 = 0[/tex] [tex]bo 10^0 = 1[/tex]
f ) [tex]log_3 27 = log_3 3^3 = 3 log_3 3 = 3*1 = 3[/tex]
g ) [tex]log 10 = 1[/tex] bo [tex]10^1 = 10[/tex]
h ) [tex]log_2 2 = 1[/tex] bo [tex]2^1 = 2[/tex]
i )
z.2
a) [tex]log_ 6 36 = 2[/tex] bo [tex]6^2 = 36[/tex]
lub [tex]log_ 6 36 = log_ 6 6^2 = 2 *log_6 6 = 2*1 = 2[/tex]
b ) [tex]log_3 729 = log_3 3^6 = 6 log_ 3 3 = 6*1 = 6[/tex]
Szczegółowe wyjaśnienie:
Korzystamy z wzoru:
[tex]log_a x^n = n *log_a x[/tex]
[tex]log_{a^\alpha } x = \frac{1}{\alpha } log_a x[/tex]
[tex]log_{a^\alpha } x^n = \frac{1}{\alpha } *n*log_a x[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a) [tex]log_{16} 64 = log_{4^2} 64 = 0,5 log_4 64 = 0,5*3 = 1,5[/tex]
lub [tex]log_{16} 64 = log_{2^4} 2^{6} = \frac{1}{4} *6*log_2 2 = \frac{6}{4} *1 = 1,5[/tex]
b) [tex]log_ 7 1 = 0[/tex] bo [tex]7^0 = 1[/tex]
c ) [tex]log_{13} 1 = 0[/tex] bo [tex]13^0 = 1[/tex]
d ) [tex]log_{16} 128 = log_{2^4} 2^7 = \frac{1}{4} *7 *log_2 2 = \frac{7}{4} *1 = 1,75[/tex]
e ) [tex]log 1 = log_{10} 1 = 0[/tex] [tex]bo 10^0 = 1[/tex]
f ) [tex]log_3 27 = log_3 3^3 = 3 log_3 3 = 3*1 = 3[/tex]
g ) [tex]log 10 = 1[/tex] bo [tex]10^1 = 10[/tex]
h ) [tex]log_2 2 = 1[/tex] bo [tex]2^1 = 2[/tex]
i )
z.2
a) [tex]log_ 6 36 = 2[/tex] bo [tex]6^2 = 36[/tex]
lub [tex]log_ 6 36 = log_ 6 6^2 = 2 *log_6 6 = 2*1 = 2[/tex]
b ) [tex]log_3 729 = log_3 3^6 = 6 log_ 3 3 = 6*1 = 6[/tex]
Szczegółowe wyjaśnienie:
Korzystamy z wzoru:
[tex]log_a x^n = n *log_a x[/tex]
[tex]log_{a^\alpha } x = \frac{1}{\alpha } log_a x[/tex]
[tex]log_{a^\alpha } x^n = \frac{1}{\alpha } *n*log_a x[/tex]