Odpowiedź:
Szczegółowe wyjaśnienie:
a₁ = 2 , r = 3 , an = x , Sn = 155 gdzie n ∈ N+
x = an = a₁ + r(n - 1) = 2 + 3(n - 1) = 2 + 3n - 3 = 3n - 1
Sn = 1/2 * (a₁ + an) * n = 1/2 * (2 + 3n - 1) * n = 1/2 * (3n + 1) * n = (3/2) n² + (1/2) n = 155
(3/2) n² + (1/2) n - 155 = 0 I * 2
3n² + n - 310 = 0
3n² - 30n + 31n - 310 = 0
3n(n - 10) + 31(n - 10) = 0
(3n + 31)(n - 10) = 0
3n + 31 = 0 I - 31
3n = -31 I : 3
n = -31/3 = -10 i 1/3
-10 1/3 ∉ N+
lub
n - 10 = 0 I + 10
n = 10 , 10 ∈ N+
x = a₁₀ = 3 * 10 - 1 = 30 - 1 = 29
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
a₁ = 2 , r = 3 , an = x , Sn = 155 gdzie n ∈ N+
x = an = a₁ + r(n - 1) = 2 + 3(n - 1) = 2 + 3n - 3 = 3n - 1
Sn = 1/2 * (a₁ + an) * n = 1/2 * (2 + 3n - 1) * n = 1/2 * (3n + 1) * n = (3/2) n² + (1/2) n = 155
(3/2) n² + (1/2) n - 155 = 0 I * 2
3n² + n - 310 = 0
3n² - 30n + 31n - 310 = 0
3n(n - 10) + 31(n - 10) = 0
(3n + 31)(n - 10) = 0
3n + 31 = 0 I - 31
3n = -31 I : 3
n = -31/3 = -10 i 1/3
-10 1/3 ∉ N+
lub
n - 10 = 0 I + 10
n = 10 , 10 ∈ N+
x = a₁₀ = 3 * 10 - 1 = 30 - 1 = 29