Odpowiedź:
a)
[tex]\frac{-x^2+5x}{x^2}=0\\\\x^2\neq 0\\x\neq 0\\\\D=\mathbb{R} \setminus\lbrace0\rbrace\\\\\frac{-x^2+5x}{x^2}=0\\-x^2+5x=0\\-x(x-5)=0\\x_1=0\notin D, \ \ x_2=5\in D[/tex]
b)
[tex]\frac{x^2-9x-10}{x^2+x}=0\\\\x^2+x\neq 0\\x(x+1)\neq0\\x\neq 0\wedge x\neq-1\\\\D=\mathbb{R}\setminus\lbrace-1,0\rbrace\\\\\frac{x^2-9x-10}{x^2+x}=0\\x^2-9x-10=0\\\Delta=81+40=121\\\sqrt{\Delta}=11\\x_1=\frac{9-11}{2}=-1\notin D\\x_2=\frac{9+11}{2}=10\in D[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
[tex]\frac{-x^2+5x}{x^2}=0\\\\x^2\neq 0\\x\neq 0\\\\D=\mathbb{R} \setminus\lbrace0\rbrace\\\\\frac{-x^2+5x}{x^2}=0\\-x^2+5x=0\\-x(x-5)=0\\x_1=0\notin D, \ \ x_2=5\in D[/tex]
b)
[tex]\frac{x^2-9x-10}{x^2+x}=0\\\\x^2+x\neq 0\\x(x+1)\neq0\\x\neq 0\wedge x\neq-1\\\\D=\mathbb{R}\setminus\lbrace-1,0\rbrace\\\\\frac{x^2-9x-10}{x^2+x}=0\\x^2-9x-10=0\\\Delta=81+40=121\\\sqrt{\Delta}=11\\x_1=\frac{9-11}{2}=-1\notin D\\x_2=\frac{9+11}{2}=10\in D[/tex]