Odpowiedź:
a ) [tex]\frac{-x^{2} + 20}{x^{2} } = 0[/tex] x² ≠ 0 ⇒ x ≠ 0 D = R \ { 0 }
- x² + 20 = 0
x² = 20 = 4*5
x = - [tex]\sqrt{4*5} = - 2\sqrt{5}[/tex] lub x = [tex]\sqrt{4*5} = 2 \sqrt{5}[/tex]
===============================================================
b )
[tex]\frac{x^{2} - 4 x + 3 }{2 x^{2} + x} = 0[/tex] 2 x² + x = x*(2 x + 1 ) ≠ 0 ⇒ x ≠ 0 i x ≠ - 0,5
D = R \ { - 0,5 ; 0 }
[tex]\frac{(x - 1)*( x - 3)}{x*(2 x + 1)} = 0[/tex]
( x - 1)*( x - 3) = 0
x - 1 = 0 lub x - 3 = 0
x = 1 lub x = 3
=======================
Szczegółowe wyjaśnienie:
[tex]\huge\boxed{~~a)~~x=2\sqrt{5} ~~\lor~~x=-2\sqrt{5}~~}[/tex]
[tex]\huge\boxed{~~b)~~x=1~~\lor~~x=3~~}[/tex]
Rozwiązując równanie należy mieć na uwadze następujące zasady:
Korzystamy ze wzorów:
[tex]a)\\\\\dfrac{-x^{2} +20}{x^{2} } =0\\\\zal.~~x^{2} \neq 0~~\Rightarrow~~x\neq 0\\\\\boxed{~~D=\mathbb{R} -\{0\}~~}\\\\\dfrac{-x^{2} +20}{x^{2} } =0\\\\~~~~~~~~~~\Downarrow\\\\-x^{2} +20=0\\\\20-x^{2} =0\\\\(\sqrt{20} )^{2}-x^{2} =0\\\\(2\sqrt{5} )^{2}-x^{2} =0\\\\(2\sqrt{5} -x)\cdot (2\sqrt{5} +x)=0\\\\2\sqrt{5} -x=0~~\lor~~2\sqrt{5} -x=0\\\\[/tex]
[tex](~~x=2\sqrt{5} ~~\lor~~x=-2\sqrt{5} ~~)~~\land~~x\in D\\\\~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~\huge\boxed{~~x=2\sqrt{5} ~~\lor~~x=-2\sqrt{5}~~}[/tex]
[tex]b)\\\\\dfrac{x^{2} -4x+3}{2x^{2} +x} =0\\\\zal.\\2x^{2} +x\neq 0\\\\x(2x+1)\neq 0\\\\x\neq 0~~\lor~~x\neq -\dfrac{1}{2} \\\\\boxed{~~D=\mathbb{R}-\{0,-\frac{1}{2} \}~~}\\\\\\\dfrac{x^{2} -4x+3}{2x^{2} +x} =0\\\\~~~~~~~~\Downarrow\\\\x^{2} -4x+3=0\\\\\Delta=(-4)^{2}-4\cdot 1 \cdot 3=16-12=4\\\\\sqrt{\Delta} =2[/tex]
[tex]x_{1} =\dfrac{4-2}{2\cdot 1} ~~\or~~x_{2} =\dfrac{4+2}{2\cdot 1} \\\\(~~x_{1} =1~~\lor~~x_{2} =3~~)~~\land~~x\in D\\\\~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~\huge\boxed{~~x=1~~\lor~~x=3~~}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a ) [tex]\frac{-x^{2} + 20}{x^{2} } = 0[/tex] x² ≠ 0 ⇒ x ≠ 0 D = R \ { 0 }
- x² + 20 = 0
x² = 20 = 4*5
x = - [tex]\sqrt{4*5} = - 2\sqrt{5}[/tex] lub x = [tex]\sqrt{4*5} = 2 \sqrt{5}[/tex]
===============================================================
b )
[tex]\frac{x^{2} - 4 x + 3 }{2 x^{2} + x} = 0[/tex] 2 x² + x = x*(2 x + 1 ) ≠ 0 ⇒ x ≠ 0 i x ≠ - 0,5
D = R \ { - 0,5 ; 0 }
[tex]\frac{(x - 1)*( x - 3)}{x*(2 x + 1)} = 0[/tex]
( x - 1)*( x - 3) = 0
x - 1 = 0 lub x - 3 = 0
x = 1 lub x = 3
=======================
Szczegółowe wyjaśnienie:
Odpowiedź:
[tex]\huge\boxed{~~a)~~x=2\sqrt{5} ~~\lor~~x=-2\sqrt{5}~~}[/tex]
[tex]\huge\boxed{~~b)~~x=1~~\lor~~x=3~~}[/tex]
Szczegółowe wyjaśnienie:
Rozwiązując równanie należy mieć na uwadze następujące zasady:
Korzystamy ze wzorów:
Rozwiązanie:
[tex]a)\\\\\dfrac{-x^{2} +20}{x^{2} } =0\\\\zal.~~x^{2} \neq 0~~\Rightarrow~~x\neq 0\\\\\boxed{~~D=\mathbb{R} -\{0\}~~}\\\\\dfrac{-x^{2} +20}{x^{2} } =0\\\\~~~~~~~~~~\Downarrow\\\\-x^{2} +20=0\\\\20-x^{2} =0\\\\(\sqrt{20} )^{2}-x^{2} =0\\\\(2\sqrt{5} )^{2}-x^{2} =0\\\\(2\sqrt{5} -x)\cdot (2\sqrt{5} +x)=0\\\\2\sqrt{5} -x=0~~\lor~~2\sqrt{5} -x=0\\\\[/tex]
[tex](~~x=2\sqrt{5} ~~\lor~~x=-2\sqrt{5} ~~)~~\land~~x\in D\\\\~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~\huge\boxed{~~x=2\sqrt{5} ~~\lor~~x=-2\sqrt{5}~~}[/tex]
[tex]b)\\\\\dfrac{x^{2} -4x+3}{2x^{2} +x} =0\\\\zal.\\2x^{2} +x\neq 0\\\\x(2x+1)\neq 0\\\\x\neq 0~~\lor~~x\neq -\dfrac{1}{2} \\\\\boxed{~~D=\mathbb{R}-\{0,-\frac{1}{2} \}~~}\\\\\\\dfrac{x^{2} -4x+3}{2x^{2} +x} =0\\\\~~~~~~~~\Downarrow\\\\x^{2} -4x+3=0\\\\\Delta=(-4)^{2}-4\cdot 1 \cdot 3=16-12=4\\\\\sqrt{\Delta} =2[/tex]
[tex]x_{1} =\dfrac{4-2}{2\cdot 1} ~~\or~~x_{2} =\dfrac{4+2}{2\cdot 1} \\\\(~~x_{1} =1~~\lor~~x_{2} =3~~)~~\land~~x\in D\\\\~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~\huge\boxed{~~x=1~~\lor~~x=3~~}[/tex]