a)
[tex]4 - x = 0 \\ x = 4[/tex]
[tex] {x}^{3} - 13x - 12 = 0[/tex]
[tex] {x}^{3} - x ^{2} - {x}^{2} - x - 12x - 12 = 0 [/tex]
[tex] {x}^{2} \times (x + 1) - x(x + 1) - 12(x + 1) = 0[/tex]
[tex](x + 1)( {x}^{2} + 3x - 4x - 12) = 0[/tex]
[tex](x + 1)( x \times (x + 3) - 4 \times (x + 3)) = 0[/tex]
[tex](x + 1)(x + 3)(x - 4) = 0 \\ x = - 1 \\ x = - 3 \\ x = 4[/tex]
Równanie ma trzy rozważania -1, -3, 4
b)
[tex] {x}^{5} - 14 {x}^{3} + 45x = 0 \\ x \times ( {x}^{4} - 14 {x}^{2} + 45) \\ x \times ( {x}^{4} - 5 {x}^{2} - 9 {x}^{2} + 45) \\ x \times ( {x}^{2} \times ( {x}^{2} - 5) - 9( {x}^{2} - 5)) = 0 \\ x \times ( {x}^{2} - 5) \times ( {x}^{2} - 9) = 0 \\ x = 0 \\ {x}^{2} - 5 = 0 \\ x = \sqrt{5} \: \: \: x = - \sqrt{5} \\ x ^{2} - 9 = 0 \\ x = 3 \: \: \: x = - 3[/tex]
Równanie ma pięć rozwiązań 0, √5, -√5, 3, -3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
[tex]4 - x = 0 \\ x = 4[/tex]
[tex] {x}^{3} - 13x - 12 = 0[/tex]
[tex] {x}^{3} - x ^{2} - {x}^{2} - x - 12x - 12 = 0 [/tex]
[tex] {x}^{2} \times (x + 1) - x(x + 1) - 12(x + 1) = 0[/tex]
[tex](x + 1)( {x}^{2} + 3x - 4x - 12) = 0[/tex]
[tex](x + 1)( x \times (x + 3) - 4 \times (x + 3)) = 0[/tex]
[tex](x + 1)(x + 3)(x - 4) = 0 \\ x = - 1 \\ x = - 3 \\ x = 4[/tex]
Równanie ma trzy rozważania -1, -3, 4
b)
[tex] {x}^{5} - 14 {x}^{3} + 45x = 0 \\ x \times ( {x}^{4} - 14 {x}^{2} + 45) \\ x \times ( {x}^{4} - 5 {x}^{2} - 9 {x}^{2} + 45) \\ x \times ( {x}^{2} \times ( {x}^{2} - 5) - 9( {x}^{2} - 5)) = 0 \\ x \times ( {x}^{2} - 5) \times ( {x}^{2} - 9) = 0 \\ x = 0 \\ {x}^{2} - 5 = 0 \\ x = \sqrt{5} \: \: \: x = - \sqrt{5} \\ x ^{2} - 9 = 0 \\ x = 3 \: \: \: x = - 3[/tex]
Równanie ma pięć rozwiązań 0, √5, -√5, 3, -3