[tex]144^{|x|} - 13 \cdot 12^{|x|} + 12 \geq 0\\(12^{|x|})^2- 13 \cdot 12^{|x|} + 12 \geq 0\\(12^{|x|})^2- 12^{|x|} -12\cdot 12^{|x|}+ 12 \geq 0\\12^{|x|}(12^{|x|}-1)-12(12^{x}-1)\geq0\\(12^{|x|}-12)(12^{|x|}-1)\geq0\\\\12^{|x|}-12=0\\12^{|x|}=12\\|x|=1\\x=-1 \vee x=1\\\\12^{|x|}-1=0\\12^{|x|}=1\\|x|=0\\x=0[/tex]
[tex]\boxed{x\in(-\infty,-1\rangle\cup\{0\}\cup\langle1,\infty)}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]144^{|x|} - 13 \cdot 12^{|x|} + 12 \geq 0\\(12^{|x|})^2- 13 \cdot 12^{|x|} + 12 \geq 0\\(12^{|x|})^2- 12^{|x|} -12\cdot 12^{|x|}+ 12 \geq 0\\12^{|x|}(12^{|x|}-1)-12(12^{x}-1)\geq0\\(12^{|x|}-12)(12^{|x|}-1)\geq0\\\\12^{|x|}-12=0\\12^{|x|}=12\\|x|=1\\x=-1 \vee x=1\\\\12^{|x|}-1=0\\12^{|x|}=1\\|x|=0\\x=0[/tex]
[tex]\boxed{x\in(-\infty,-1\rangle\cup\{0\}\cup\langle1,\infty)}[/tex]