Różnice między mikroskopem transmisyjnym a skaningowym.
Zgłoś nadużycie!
MIKROSKOP SKANINGOWY Mikroskopy skaningowe przeglądają powierzchnię próbki punkt po punkcie. Konstruuje się wiele rodzajów mikroskopów opartych na tej idei. Przeglądanie może być realizowane przez skupianie wiązki elektronowej na próbce i jej odchylanie lub przez przemieszczanie ostrza emitującego wiązkę nad próbką. W mikroskopach z ruchomą wiązką, wiązka elektronów jest skupiona na powierzchni preparatu. Układ odchylania przesuwa wiązkę po preparacie, uwalniane z preparatu elektrony są rejestrowane wraz z danymi o położeniu wiązki. Po przetworzeniu danych uzyskuje się obrazy o dużej rozdzielczości i znacznej głębi ostrości. Istnieje kilka typów mikroskopów z ruchomym ostrzem: skaningowy mikroskop elektronowy emisyjny - rejestracja elektronów emitowanych z sondy (natężenie prądu sondy) przepływających pomiędzy sondą a próbką, skaningowy mikroskop polowy - rodzaj mikroskopu elektronowego emisyjnego ale emisja elektronów jest emisją polową, tzn. zachodzi w wyniku silnego pola elektrycznego na ostrzu sondy, skaningowy mikroskop tunelowy MIKROSKOP TRANSMISYJNY Elektronowy mikroskop transmisyjny- rejestrowane są elektrony przechodzące przez próbkę. Próbka w takim mikroskopie musi być cienką płytką o grubości mniejszej od 0,1 mikrometra. Przygotowanie takiej próbki jest trudne i znacznie ogranicza zastosowania mikroskopu. Najważniejszym elementem mikroskopu elektronowego jest kolumna mikroskopu (1), która zawiera działo elektronowe (2) wytwarzające (np. w wyniku termoemisji lub emisji polowej) wiązkę elektronów (3). Wstępnie uformowana wiązka elektronów w obszarze pomiędzy katodą (4) i anodą (5) zostaje rozpędzona uzyskując energię: E = eU, gdzie e jest ładunkiem elektronu, a U napięciem między katodą i anodą. Zwiększenie napięcia pozwala na zwiększenie pędu elektronów, co zmniejsza długości fali. Przykładowo, gdy napięcie przyspieszające U= 300kV , wtedy długość fali elektronów λ = 0,00197 nm. Dla takiego napięcia prędkość elektronów w kolumnie mikroskopu v =0,776c, gdzie c jest prędkością światła w próżni
Mikroskopy skaningowe przeglądają powierzchnię próbki punkt po punkcie. Konstruuje się wiele rodzajów mikroskopów opartych na tej idei. Przeglądanie może być realizowane przez skupianie wiązki elektronowej na próbce i jej odchylanie lub przez przemieszczanie ostrza emitującego wiązkę nad próbką.
W mikroskopach z ruchomą wiązką, wiązka elektronów jest skupiona na powierzchni preparatu. Układ odchylania przesuwa wiązkę po preparacie, uwalniane z preparatu elektrony są rejestrowane wraz z danymi o położeniu wiązki. Po przetworzeniu danych uzyskuje się obrazy o dużej rozdzielczości i znacznej głębi ostrości.
Istnieje kilka typów mikroskopów z ruchomym ostrzem:
skaningowy mikroskop elektronowy emisyjny - rejestracja elektronów emitowanych z sondy (natężenie prądu sondy) przepływających pomiędzy sondą a próbką,
skaningowy mikroskop polowy - rodzaj mikroskopu elektronowego emisyjnego ale emisja elektronów jest emisją polową, tzn. zachodzi w wyniku silnego pola elektrycznego na ostrzu sondy,
skaningowy mikroskop tunelowy
MIKROSKOP TRANSMISYJNY
Elektronowy mikroskop transmisyjny- rejestrowane są elektrony przechodzące przez próbkę. Próbka w takim mikroskopie musi być cienką płytką o grubości mniejszej od 0,1 mikrometra. Przygotowanie takiej próbki jest trudne i znacznie ogranicza zastosowania mikroskopu.
Najważniejszym elementem mikroskopu elektronowego jest kolumna mikroskopu (1), która zawiera działo elektronowe (2) wytwarzające (np. w wyniku termoemisji lub emisji polowej) wiązkę elektronów (3). Wstępnie uformowana wiązka elektronów w obszarze pomiędzy katodą (4) i anodą (5) zostaje rozpędzona uzyskując energię: E = eU, gdzie e jest ładunkiem elektronu, a U napięciem między katodą i anodą. Zwiększenie napięcia pozwala na zwiększenie pędu elektronów, co zmniejsza długości fali. Przykładowo, gdy napięcie przyspieszające U= 300kV , wtedy długość fali elektronów λ = 0,00197 nm. Dla takiego napięcia prędkość elektronów w kolumnie mikroskopu v =0,776c, gdzie c jest prędkością światła w próżni