Explicación paso a paso:
[tex] - {x}^{2} - 4x - 2 = 0 \\ x = \frac{ - b + - \sqrt{ {b}^{2} - 4ac } }{2a} \\ x = \frac{ - ( - 4) + - \sqrt{( { - 4}^{2} ) - 4( - 1)( - 2)} }{(2)( - 1)} \\ x = \frac{4 + - \sqrt{16 - 8} }{ - 2} \\ x = \frac{4 + - \sqrt{8} }{ - 2} \\ x = \frac{4 + - 2 \sqrt{2} }{ - 2} \\ x = \frac{4 + 2 \sqrt{2} }{ - 2} \\ x = \frac{2(2 + \sqrt{2}) }{ - 2} \\ x = - (2 + \sqrt{2} ) \\ x = - 2 - \sqrt{2} \\ x = \frac{4 - 2 \sqrt{2} }{ - 2} \\ x = \frac{2(2 - \sqrt{2}) }{ - 2} \\ x = - (2 - \sqrt{2)} \\ x = - 2 + \sqrt{2} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
[tex] - {x}^{2} - 4x - 2 = 0 \\ x = \frac{ - b + - \sqrt{ {b}^{2} - 4ac } }{2a} \\ x = \frac{ - ( - 4) + - \sqrt{( { - 4}^{2} ) - 4( - 1)( - 2)} }{(2)( - 1)} \\ x = \frac{4 + - \sqrt{16 - 8} }{ - 2} \\ x = \frac{4 + - \sqrt{8} }{ - 2} \\ x = \frac{4 + - 2 \sqrt{2} }{ - 2} \\ x = \frac{4 + 2 \sqrt{2} }{ - 2} \\ x = \frac{2(2 + \sqrt{2}) }{ - 2} \\ x = - (2 + \sqrt{2} ) \\ x = - 2 - \sqrt{2} \\ x = \frac{4 - 2 \sqrt{2} }{ - 2} \\ x = \frac{2(2 - \sqrt{2}) }{ - 2} \\ x = - (2 - \sqrt{2)} \\ x = - 2 + \sqrt{2} [/tex]