Explicación:
[tex] {x}^{2} + {y}^{2} = 5 \\ 3 {x}^{2} + {y}^{2} = 13 \\ {x}^{2} + {y}^{2} = 5( - 1) \\ 3 {x}^{2} + {y}^{2} = 13(1) \\ - {x}^{2} - {y}^{2} = - 5 \\ 3 {x}^{2} + {y}^{2} = 13 \\ 2 {x}^{2} = 8 \\ {x}^{2} = \frac{8}{2} \\ {x}^{2} = 4 \\ \sqrt{ {x}^{2} } = \sqrt{4} \\ x = + - 2 \\ y = \sqrt{13 - 3 {x}^{2} } \\ y = \sqrt{13 - 3(2 )^{2} } \\ y = \sqrt{13 - 12} = \sqrt{1} = 1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explicación:
[tex] {x}^{2} + {y}^{2} = 5 \\ 3 {x}^{2} + {y}^{2} = 13 \\ {x}^{2} + {y}^{2} = 5( - 1) \\ 3 {x}^{2} + {y}^{2} = 13(1) \\ - {x}^{2} - {y}^{2} = - 5 \\ 3 {x}^{2} + {y}^{2} = 13 \\ 2 {x}^{2} = 8 \\ {x}^{2} = \frac{8}{2} \\ {x}^{2} = 4 \\ \sqrt{ {x}^{2} } = \sqrt{4} \\ x = + - 2 \\ y = \sqrt{13 - 3 {x}^{2} } \\ y = \sqrt{13 - 3(2 )^{2} } \\ y = \sqrt{13 - 12} = \sqrt{1} = 1[/tex]