Respuesta:
A) x+3y = 7 (1)
4x-2y = -1 (2)
Método de sustitución:
1) Despejo " y " en (1) :
x+3y = 7
3y = 7-x
3y/3 = (7-x)/3
y = (7-x)/3
2) Reemplazo " y = (7-x)/3 " en (2) :
4x-2((7-x)/3 ) = -1
4x -(14+2x/3) = -1
3(4x)-3(14+2x/3) = 3(-1)
12x - (14+2x) = -3
12x -14 -2x = -3
10x -14 = -3
10x = -3+14
10x = 11
10x/10 = 11/10
2) Sustituyo " x = 11/10 '' en (1) :
(11/10)+3y = 7 ; 7 = 70/10
11/10+3y = 70/10
11/10+3y-11/10 = 70/10-11/10
3y = 59/10
10(3y) = 59
30y = 59
30y/30 = 59/30
y = 59/30
R// x = 11/10. e y = 59/30
B) 3x-5y = 4 (1)
2x-y = -2 (2)
Método de sustitución :
3x-5y = 4
-5y = 4-3x
-(-5y) = -(4-3x)
5y = -4+3x.
5y/5 = (-4+3x)/5
y = (-4+3x)/5
2) Sustituyo " y = (-4+3x)/5 " en (2) :
2x-((-4+3x)/5) = -2
5(2x)-5(-4+3x/5) = -2(5)
10x-(-4+3x) = -10
10x+4-3x = -10
7x +4 = -10
7x+4-4 = -10-4
7x = -14
7x/7 = -14/7
x = -2
3) Cambio " x = -2 '' en (1) :
3(-2)-5y = 4
-6-5y = 4
-5y = 4+6
-5y = 10
-5y/-1 = 10/-1
5y = -10
5y/5 = -10/5
y = -2
R// x = -2 e y = -2
C) x+4y = 5
2x+8y = 10
Este sistema carece de solución puesto que se trata de un sistema que se conforma por 2 ecuaciones equivalentes.
D) -x+y = -3 (1)
x-4y = 12 (2)
1) Despejo " y " en (2) :
x-4y = 12
x-4y-x = 12-x
-4y = 12-x
-(-4y) = -(12-x)
4y = -12+x
4y/4 = (-12+x)/4
y = (-12+x)/4
2) Reemplazo " y = (-12+x)/4 " en (1) :
-x+((-12+x)/4) = -3
4(-x)+4((-12+x)/4) = -3(4)
-4x+(-12+x) = -12
-4x - 12 + x = -12
- 3x -12 = -12
- 3x/3 -12/3 = -12/3
- x -4 = -4
-x = -4+4
-x = 0
-(-x) = -1(0)
x = 0
3) Sustituyo " x = 0 " en " y = (-12+x)/4 " :
y = (-12+(0))/4
y = -12/4
y = -3
R// x = 0 e y = -3
E) 2x+2y = 6 (1)
5x+9y = 18 (2)
2x+2y = 6
2x/2+2y/2 = 6/2
x+y = 3
x+y-x = 3-x
y = 3-x
2) Reemplazo " y = 3-x " en (2) :
5x+2(3-x) = 18
5x+6-2x = 18
3x+6 = 18
3x/3+6/3 = 18/3
x+2 = 6
x+2-2 = 6-2
x = 4
3) Cambio " x = 4 " en " 2x+2y = 6 '' :
2(4)+2y = 6
8+2y = 6
8+2y-8 = 6-8
2y = -2
2y/2 = -2/2
y = -1
R// x = 4 e y = -1
Explicación paso a paso:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
A) x+3y = 7 (1)
4x-2y = -1 (2)
Método de sustitución:
1) Despejo " y " en (1) :
x+3y = 7
3y = 7-x
3y/3 = (7-x)/3
y = (7-x)/3
2) Reemplazo " y = (7-x)/3 " en (2) :
4x-2((7-x)/3 ) = -1
4x -(14+2x/3) = -1
3(4x)-3(14+2x/3) = 3(-1)
12x - (14+2x) = -3
12x -14 -2x = -3
10x -14 = -3
10x = -3+14
10x = 11
10x/10 = 11/10
2) Sustituyo " x = 11/10 '' en (1) :
(11/10)+3y = 7 ; 7 = 70/10
11/10+3y = 70/10
11/10+3y-11/10 = 70/10-11/10
3y = 59/10
10(3y) = 59
30y = 59
30y/30 = 59/30
y = 59/30
R// x = 11/10. e y = 59/30
B) 3x-5y = 4 (1)
2x-y = -2 (2)
Método de sustitución :
1) Despejo " y " en (1) :
3x-5y = 4
-5y = 4-3x
-(-5y) = -(4-3x)
5y = -4+3x.
5y/5 = (-4+3x)/5
y = (-4+3x)/5
2) Sustituyo " y = (-4+3x)/5 " en (2) :
2x-((-4+3x)/5) = -2
5(2x)-5(-4+3x/5) = -2(5)
10x-(-4+3x) = -10
10x+4-3x = -10
7x +4 = -10
7x+4-4 = -10-4
7x = -14
7x/7 = -14/7
x = -2
3) Cambio " x = -2 '' en (1) :
3(-2)-5y = 4
-6-5y = 4
-5y = 4+6
-5y = 10
-5y/-1 = 10/-1
5y = -10
5y/5 = -10/5
y = -2
R// x = -2 e y = -2
C) x+4y = 5
2x+8y = 10
Este sistema carece de solución puesto que se trata de un sistema que se conforma por 2 ecuaciones equivalentes.
D) -x+y = -3 (1)
x-4y = 12 (2)
Método de sustitución :
1) Despejo " y " en (2) :
x-4y = 12
x-4y-x = 12-x
-4y = 12-x
-(-4y) = -(12-x)
4y = -12+x
4y/4 = (-12+x)/4
y = (-12+x)/4
2) Reemplazo " y = (-12+x)/4 " en (1) :
-x+((-12+x)/4) = -3
4(-x)+4((-12+x)/4) = -3(4)
-4x+(-12+x) = -12
-4x - 12 + x = -12
- 3x -12 = -12
- 3x/3 -12/3 = -12/3
- x -4 = -4
-x = -4+4
-x = 0
-(-x) = -1(0)
x = 0
3) Sustituyo " x = 0 " en " y = (-12+x)/4 " :
y = (-12+(0))/4
y = -12/4
y = -3
R// x = 0 e y = -3
E) 2x+2y = 6 (1)
5x+9y = 18 (2)
Método de sustitución :
1) Despejo " y " en (1) :
2x+2y = 6
2x/2+2y/2 = 6/2
x+y = 3
x+y-x = 3-x
y = 3-x
2) Reemplazo " y = 3-x " en (2) :
5x+2(3-x) = 18
5x+6-2x = 18
3x+6 = 18
3x/3+6/3 = 18/3
x+2 = 6
x+2-2 = 6-2
x = 4
3) Cambio " x = 4 " en " 2x+2y = 6 '' :
2(4)+2y = 6
8+2y = 6
8+2y-8 = 6-8
2y = -2
2y/2 = -2/2
y = -1
R// x = 4 e y = -1
Explicación paso a paso: