Explicación paso a paso:
[tex] \frac{d}{dx} (( 6 {x}^{2} - x + 7)(5x + 3) = \\ (5x + 3) \frac{d}{dx}(6 {x}^{2} - x + 7) + (6 {x}^{2} - x + 7) \frac{d}{dx} (5x + 3) \\ = (5x + 3)(12x - 1) + (6 {x}^{2} - x + 7)5 \\ = 60 {x}^{2} - 5x + 36x - 3 + 30 {x}^{2} - 5x + 35 \\ = 90 {x}^{2} + 26x + 32[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
[tex] \frac{d}{dx} (( 6 {x}^{2} - x + 7)(5x + 3) = \\ (5x + 3) \frac{d}{dx}(6 {x}^{2} - x + 7) + (6 {x}^{2} - x + 7) \frac{d}{dx} (5x + 3) \\ = (5x + 3)(12x - 1) + (6 {x}^{2} - x + 7)5 \\ = 60 {x}^{2} - 5x + 36x - 3 + 30 {x}^{2} - 5x + 35 \\ = 90 {x}^{2} + 26x + 32[/tex]