[tex]La\:respuesta\:es[/tex] ⇒[tex]8x^9+36x^6y+54x^3y^2+27y^3[/tex]
[tex]Veamos\:los\:pasos[/tex]
[tex]\left(2x^3+3y\right)^3[/tex]
[tex]\mathrm{Podemos\:aplicar\:la\:formula\:del\:binomio\:al\:cubo\:que\:es}:\quad \left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3[/tex]
[tex]\left(2x^3+3y\right)^3= \left(2x^3\right)^3+3\left(2x^3\right)^2\cdot \:3y+3\cdot \:2x^3\left(3y\right)^2+\left(3y\right)^3[/tex]
[tex]Podemos\:simplificar\:: \left(2x^3\right)^3+3\left(2x^3\right)^2\cdot \:3y+3\cdot \:2x^3\left(3y\right)^2+\left(3y\right)^3: 8x^{9} +36x^{6} y+54x^{3} y^{2} + 27y^{3}[/tex]
[tex]=8x^9+36x^6y+54x^3y^2+27y^3[/tex]
[tex]Buena\:suerte\:con\:tus\:tareas\::ProfeAndresFelipe :)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]La\:respuesta\:es[/tex] ⇒[tex]8x^9+36x^6y+54x^3y^2+27y^3[/tex]
[tex]Veamos\:los\:pasos[/tex]
[tex]\left(2x^3+3y\right)^3[/tex]
[tex]\mathrm{Podemos\:aplicar\:la\:formula\:del\:binomio\:al\:cubo\:que\:es}:\quad \left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3[/tex]
[tex]\left(2x^3+3y\right)^3= \left(2x^3\right)^3+3\left(2x^3\right)^2\cdot \:3y+3\cdot \:2x^3\left(3y\right)^2+\left(3y\right)^3[/tex]
[tex]Podemos\:simplificar\:: \left(2x^3\right)^3+3\left(2x^3\right)^2\cdot \:3y+3\cdot \:2x^3\left(3y\right)^2+\left(3y\right)^3: 8x^{9} +36x^{6} y+54x^{3} y^{2} + 27y^{3}[/tex]
[tex]=8x^9+36x^6y+54x^3y^2+27y^3[/tex]
[tex]Buena\:suerte\:con\:tus\:tareas\::ProfeAndresFelipe :)[/tex]