Ruch drgający Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus i cosinus. Ruch sinusoidalny jest powszechną formą ruchu obserwowaną w życiu codziennym i dlatego jest ważnym przedmiotem fizyki. 13. 1 Siła harmoniczna Działającą na ciało siłę, która jest proporcjonalna do przesunięcia ciała od początku układu i która jest skierowana ku początkowi układu, nazywamy siłą harmoniczną lub siłą sprężystości. Jeżeli obierzemy oś x wzdłuż przesunięcia, to siła harmoniczna jest wyrażona równaniem F = – kx (13. 1) gdzie x jest przesunięciem od położenia równowagi. To równanie opisuje siłę wywieraną przez rozciągniętą sprężynę o ile tylko sprężyna nie została rozciągnięta poza granicę sprężystości. To jest prawo Hooke"a. Jeżeli sprężyna zostanie rozciągnięta tak aby masa m (zaczepiona do sprężyny) znalazła się w położeniu x = A, a następnie w chwili t = 0 została zwolniona, to położenie masy w funkcji czasu będzie dane równaniem x = Acosct Sprawdźmy czy to jest dobry opis ruchu. Dla t = 0, x = A tzn. opis zgadza się z założeniami. Z II zasady dynamiki Newtona wynika, że – kx = ma czyli – kx = m(dv/dt) wreszcie – kx = m(d2x/dt2) (13. 2) Równanie takie nazywa się równaniem różniczkowym drugiego rzędu. Staramy się "odgadnąć" rozwiązanie i następnie sprawdzić nasze przypuszczenia. Zwróćmy uwagę, że rozwiązaniem jest funkcja x(t), która ma tę właściwość, że jej druga pochodna jest równa funkcji ale ze znakiem "–". Zgadujemy, że może to być funkcja x = Acosct i sprawdzamy dx/dt = v = – AAsinst
Ruch drgający
Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus i cosinus. Ruch sinusoidalny jest powszechną formą ruchu obserwowaną w życiu codziennym i dlatego jest ważnym przedmiotem fizyki.
13. 1 Siła harmoniczna
Działającą na ciało siłę, która jest proporcjonalna do przesunięcia ciała od początku układu i która jest skierowana ku początkowi układu, nazywamy siłą harmoniczną lub siłą sprężystości. Jeżeli obierzemy oś x wzdłuż przesunięcia, to siła harmoniczna jest wyrażona równaniem
F = – kx (13. 1)
gdzie x jest przesunięciem od położenia równowagi. To równanie opisuje siłę wywieraną przez rozciągniętą sprężynę o ile tylko sprężyna nie została rozciągnięta poza granicę sprężystości. To jest prawo Hooke"a.
Jeżeli sprężyna zostanie rozciągnięta tak aby masa m (zaczepiona do sprężyny) znalazła się w położeniu x = A, a następnie w chwili t = 0 została zwolniona, to położenie masy w funkcji czasu będzie dane równaniem
x = Acosct
Sprawdźmy czy to jest dobry opis ruchu. Dla t = 0, x = A tzn. opis zgadza się z założeniami. Z II zasady dynamiki Newtona wynika, że
– kx = ma
czyli
– kx = m(dv/dt)
wreszcie
– kx = m(d2x/dt2) (13. 2)
Równanie takie nazywa się równaniem różniczkowym drugiego rzędu. Staramy się "odgadnąć" rozwiązanie i następnie sprawdzić nasze przypuszczenia. Zwróćmy uwagę, że rozwiązaniem jest funkcja x(t), która ma tę właściwość, że jej druga pochodna jest równa funkcji ale ze znakiem "–". Zgadujemy, że może to być funkcja x = Acosct i sprawdzamy
dx/dt = v = – AAsinst