Respuesta:
[tex] {x}^{11} [/tex]
Explicación paso a paso:
[tex] \frac{{( {x}^{2} )}^{(m + 5)} \times {( {x}^{3} )}^{(2m - 1)}}{{( {x}^{4} )}^{(2m - 1)}} \\ \\ \frac{ {x}^{(2m + 10)} \times {x}^{(6m - 3)} }{ {x}^{(8m - 4)} } \\ \\ \frac{ {x}^{(8m + 7)} }{ {x}^{(8m - 4)} } = {x}^{11} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
[tex] {x}^{11} [/tex]
Explicación paso a paso:
[tex] \frac{{( {x}^{2} )}^{(m + 5)} \times {( {x}^{3} )}^{(2m - 1)}}{{( {x}^{4} )}^{(2m - 1)}} \\ \\ \frac{ {x}^{(2m + 10)} \times {x}^{(6m - 3)} }{ {x}^{(8m - 4)} } \\ \\ \frac{ {x}^{(8m + 7)} }{ {x}^{(8m - 4)} } = {x}^{11} [/tex]