Reacciones que ocurren en el Sol y sus efectos. ALGUIEN SABE AYUDAA!!!1
memegetta11El Sol está constituido por un 81 % de hidrógeno, 18 % de helio y el 1 % restante que se reparte entre otros elementos. En su centro se calcula que existe un 49 % de hidrógeno, 49 % de helio y el 2 % restante en otros elementos que sirven como catalizadores en las reacciones termonucleares. A comienzos de la década de los años 30 del siglo **, el físico austriaco Fritz Houtermans (1903-1966) y el astrónomo inglés Robert d'Escourt Atkinson (1898-1982) unieron sus esfuerzos para averiguar si la producción de energía en el interior del Sol y en las estrellas se podía explicar por las transformaciones nucleares. En 1938 Hans Albrecht Bethe (1906-2005) en Estados Unidos y Karl Friedrich von Weizsäker (1912-), en Alemania, simultánea e independientemente, encontraron el hecho notable de que un grupo de reacciones en las que intervienen el carbono y el nitrógeno como catalizadores constituyen un ciclo, que se repite una y otra vez, mientras dura el hidrógeno. A este grupo de reacciones se las conoce como "ciclo de Bethe o del carbono", y es equivalente a la fusión de cuatro protones en un núcleo de helio. En estas reacciones de fusión hay una pérdida de masa, esto es, el hidrógeno consumido pesa más que el helio producido. Esa diferencia de masa se transforma en energía según la ecuación de Einstein (E = mc2), donde E es la energía, m la masa y c la velocidad de la luz. Estas reacciones nucleares transforman el 0,7 % de la masa afectada en fotones, con una longitud de onda cortísima y, por lo tanto, muy energéticos y penetrantes. La energía producida mantiene el equilibrio térmico del núcleo solar a temperaturas aproximadamente de 15 millones de kelvins. El ciclo ocurre en las siguientes etapas: 1H1 + 6C12 → 7N13; 7N13 → 6C13 + e+ + neutrino; 1H1 + 6C13 → 7N14; 1H1 + 7N14 → 8O15; 8O15 → 7N15 + e+ + neutrino, y por último 1H1 + 7N15 → 6C12 + 2He4. Sumando todas las reacciones y cancelando los términos comunes, se tiene 4 1H1 → 2He4 + 2e+ + 2 neutrinos + 26,7 MeV. La energía neta liberada en el proceso es 26,7 MeV, o sea cerca de 6,7·1014 J por kg de protones consumidos. El carbono actúa como catalizador, pues al final del ciclo se regenera. Otra reacción de fusión que ocurre en el Sol y en las estrellas, es el ciclo de Critchfiel o protón-protón. Charles Critchfield (1910-1994) era en 1938 un joven físico alumno de George Gamow (1904-1968) en la Universidad de George Washington, y tuvo una idea completamente diferente, al darse cuenta que en el choque entre dos protones muy rápidos puede ocurrir que uno pierda su carga positiva y se convierta en un neutrón, que permanece unido al otro protón constituyendo un deuterón, es decir, un núcleo de hidrógeno pesado. La reacción puede producirse de dos maneras algo distintas: 1H1 + 1H1 → 2H2 + e+ + neutrino 1H1 + 1H2 → 2He3; 2He3 + 2He3 → 2He4 + 2 1H1. El primer ciclo se da en estrellas más calientes y con mayor masa que el Sol, y la cadena protón-protón en las similares al Sol. En cuanto al Sol, hasta el año 1953 creyó que su energía era producida casi exclusivamente por el ciclo de Bethe, pero se demostró durante estos últimos años que el calor solar viene en la mayoría (~75%) del ciclo protón-protón.
1H1 + 6C12 → 7N13;
7N13 → 6C13 + e+ + neutrino;
1H1 + 6C13 → 7N14;
1H1 + 7N14 → 8O15;
8O15 → 7N15 + e+ + neutrino, y por último
1H1 + 7N15 → 6C12 + 2He4.
Sumando todas las reacciones y cancelando los términos comunes, se tiene
4 1H1 → 2He4 + 2e+ + 2 neutrinos + 26,7 MeV.
La energía neta liberada en el proceso es 26,7 MeV, o sea cerca de 6,7·1014 J por kg de protones consumidos. El carbono actúa como catalizador, pues al final del ciclo se regenera.
Otra reacción de fusión que ocurre en el Sol y en las estrellas, es el ciclo de Critchfiel o protón-protón. Charles Critchfield (1910-1994) era en 1938 un joven físico alumno de George Gamow (1904-1968) en la Universidad de George Washington, y tuvo una idea completamente diferente, al darse cuenta que en el choque entre dos protones muy rápidos puede ocurrir que uno pierda su carga positiva y se convierta en un neutrón, que permanece unido al otro protón constituyendo un deuterón, es decir, un núcleo de hidrógeno pesado. La reacción puede producirse de dos maneras algo distintas:
1H1 + 1H1 → 2H2 + e+ + neutrino
1H1 + 1H2 → 2He3; 2He3 + 2He3 → 2He4 + 2 1H1.
El primer ciclo se da en estrellas más calientes y con mayor masa que el Sol, y la cadena protón-protón en las similares al Sol. En cuanto al Sol, hasta el año 1953 creyó que su energía era producida casi exclusivamente por el ciclo de Bethe, pero se demostró durante estos últimos años que el calor solar viene en la mayoría (~75%) del ciclo protón-protón.