A. 4√3
Penjelasan dengan langkah-langkah:
diketahui ∆ABC didalam lingkaran O
<BAC = 60°
AB= 7
AC = 5
BC² = AB² + AC² - 2(AB×AC)cos 60
= 49 + 25 - 2(5×7)½
= 74 - 35
= 39
BC = √39
Luas ∆ABC
= ½AB×AC×sin 60
= (35/4)√3
Jari - jari Lingkaran
= (AB×AC×BC) : 4(Luas ∆ABC)
= (5×7×√39) : 4(35/4)√3
= (35√39) : 35√3
= √39 / √3
= √13
AD = x
<CAD = 30 = sudut keliling dari <COD
<COD = 2× <CAD = 2(30) = 60°
Dinyatakan ∆COD sama sisi
AO = OD = CD = r = √13
Terbentuk ∆ADC
<CAD = 30
AC= 5
CD=√13
CD/sin 30 = AC/sin <CDA
sin <CDA = AC(sin 30) / CD
= 5(½) /√13
= 0,6934
<CDA = arc sin 0.6934
= 43,9°
<ACD = 180 - (30+43,9)
= 180 - 73,9
= 106,1°
CD/sin 30 = x/sin 106,1°
x = CD(sin 106,1) : sin 30
= √13( 0,9608) : ½
= 6,9282
= 4√3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A. 4√3
Penjelasan dengan langkah-langkah:
diketahui ∆ABC didalam lingkaran O
<BAC = 60°
AB= 7
AC = 5
BC² = AB² + AC² - 2(AB×AC)cos 60
= 49 + 25 - 2(5×7)½
= 74 - 35
= 39
BC = √39
Luas ∆ABC
= ½AB×AC×sin 60
= (35/4)√3
Jari - jari Lingkaran
= (AB×AC×BC) : 4(Luas ∆ABC)
= (5×7×√39) : 4(35/4)√3
= (35√39) : 35√3
= √39 / √3
= √13
AD = x
<CAD = 30 = sudut keliling dari <COD
<COD = 2× <CAD = 2(30) = 60°
Dinyatakan ∆COD sama sisi
AO = OD = CD = r = √13
Terbentuk ∆ADC
<CAD = 30
AC= 5
CD=√13
AD = x
CD/sin 30 = AC/sin <CDA
sin <CDA = AC(sin 30) / CD
= 5(½) /√13
= 0,6934
<CDA = arc sin 0.6934
= 43,9°
<ACD = 180 - (30+43,9)
= 180 - 73,9
= 106,1°
CD/sin 30 = x/sin 106,1°
x = CD(sin 106,1) : sin 30
= √13( 0,9608) : ½
= 6,9282
= 4√3