[tex]( \frac{f}{g}) = \frac{f(x)}{g(x)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{ {x}^{2} + 5x }{ {6x}^{2} - 10x} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{(x)(x + 5)}{(x)(6x - 10)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{\bcancel{(x)}(x + 5)}{\bcancel{(x)}(6x - 10)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{(x + 5)}{(6x - 10)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{x + 5}{6x - 10} \\ [/tex]
[tex]\tiny{\tt{ \red{Palzz}}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
[tex]( \frac{f}{g}) = \frac{f(x)}{g(x)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{ {x}^{2} + 5x }{ {6x}^{2} - 10x} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{(x)(x + 5)}{(x)(6x - 10)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{\bcancel{(x)}(x + 5)}{\bcancel{(x)}(6x - 10)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{(x + 5)}{(6x - 10)} \\ [/tex]
[tex]( \frac{f}{g} )(x) = \frac{x + 5}{6x - 10} \\ [/tex]
[tex]\tiny{\tt{ \red{Palzz}}}[/tex]