~QUIZ~ . Soal: Berapakah titik pusat dan jari-jari dari persamaan lingkaran x² + y² - 4x + 2y + c = 0 yang melalui titik (5, -1)? . Syarat untuk menjawab soal : ● Dilarang jawaban berupa komentar spam atau asal²an. ● Dilarang copas jawaban dari google. ● Jawabannya harus disertai dengan penjelasan yang masuk akal. ● Gunakanlah kata-kata jawabanmu sendiri yang baik dan benar.
Penjelasan dengan langkah-langkah:
x²+y²-4x+2y+c=0
5²+(-1)²-4(5)+2(-1)+c=0
25+1-20-2+c=0
c=-4
x²+y²+Ax+By+C=0
x²+y²-4x+2y-4=0
Pusat (-1/2A , -1/2B)
(-1/2(-4) , -1/2(2) )
(2,-1)
Jari jari √1/4A²+1/4B²-C
√1/4(-4)²+1/4(2)²-(-4)
√1/4(16)+1/4(4)+4
√4+1+4
√9
3
Verified answer
(5 => X , -1 => Y)
MAKA :
x² + y² - 4x + 2y + c = 0
(5²) + (-1)² - (4(5) + (2(-1) + c = 0
(5(5) + (-1(-1) - 20 + (-2) + c = 0
25 + (1(1) - 20 - 2 + c = 0
25 + 1 - 20 - 2 + c = 0
26 - 20 - 2 + c = 0
6 - 2 + c = 0
4 + c = 0
c = 0 - 4
c = -4
==========================
x² + y² - 4x + 2y - 4 = 0
TP :
= (-1/2(A) , (-1/2(B)
= (-1/2(-4) , (-1/2(2)
= (-1(-4/2) , (-2/2)
= (-1(-2) , (-1)
= (1(2) , (-1)
= (2 , -1)
R = √(1/4(A²) + (1/4(B²) - C
= √(1/4(-4)²) + (1/4(2)²) - (-4)
= √(1/4(-4(-4) + (1/4(2(2) + 4
= √1/4(4(4) + (1/4(4) + 4
= √1/4(16) + (1(4/4) + 4
= √1(16/4) + 1 + 4
= √(1(4) + 1 + 4
= √4 + 1 + 4
= √5 + 4
= √9
= √(3(3)
= √3²
= 3