~QUIZ~ . Note: Soal terlampir. . Syarat untuk menjawab soal : ● Dilarang jawaban berupa komentar spam atau asal²an. ● Dilarang copas jawaban dari google. ● Jawabannya harus disertai dengan penjelasan yang masuk akal. ● Gunakanlah kata-kata jawabanmu sendiri yang baik dan benar.
Penjelasan dengan langkah-langkah:
tan²a - tan²b
= (tan a + tan b)(tan a - tan b)
= (sin a/cos a + sin b/cos b)(sin a/cos a - sin b/cos b)
= ((sin a . cos b + sin b . cos a))/(cos a . cos b)((sin a . cos b - sin b . cos a)/(cos a . cos b)
= sin (a + b)/(cos a . cos b) . (sin a - b)/(cos a . cos b)
= (sin (a + b) . sin (a - b))/(cos²a . cos²b)
= ((sin a . cos b + cos a . sin b)) . ((sin a . cos b - cos a . sin b)/(cos²a . cos²b)
= (sin²a . cos²b - sin²b . cos²a)/(cos²a . cos²b)
= (cos²b . sin²a - cos²a . sin²b)/(cos²a . cos²b)
= ((1 - sin²b) . sin²a - (1 - sin²a) . sin²b)/(cos²a . cos²b)
= sin²a - sin²a . sin²b - (sin²b - sin²a . sin²b)/(cos²a . cos²b)
= (sin²a - sin²b)/(cos²a . cos²b) √
ps.
tan²a - tan²b = (tan a + tan b)(tan a - tan b)
sin (a - b) = sin a . cos b - cos a . sin b
sin (a + b) = sin a . cos b + cos a . sin b
Verified answer
tan²α - tan²β = (sin²α - sin²β)/(cos²α cos²β)
Menggunakan 3 Identitas Trigonometri:
[tex]tan^{2} \alpha -tan^{2} \beta =\frac{sin^{2}\alpha -sin^{2}\beta }{cos^{2}\alpha\: cos^{2}\beta }\\\\tan^{2} \alpha -tan^{2} \beta =\frac{(1-cos^{2}\alpha) -( 1-cos^{2}\beta) }{cos^{2}\alpha\: cos^{2}\beta }[/tex]
[tex]tan^{2} \alpha -tan^{2} \beta =\frac{1-cos^{2}\alpha - 1+cos^{2}\beta }{cos^{2}\alpha\: cos^{2}\beta }\\\\tan^{2} \alpha -tan^{2} \beta =\frac{cos^{2}\beta -cos^{2}\alpha }{cos^{2}\alpha\: cos^{2}\beta }\\\\tan^{2} \alpha -tan^{2} \beta =\frac{cos^{2}\beta}{cos^{2}\alpha\: cos^{2}\beta} -\frac{cos^{2}\alpha }{cos^{2}\alpha\: cos^{2}\beta}[/tex]
[tex]tan^{2} \alpha -tan^{2} \beta =\frac{1}{cos^{2}\alpha } -\frac{1}{cos^{2}\beta }[/tex]
tan²α - tan²β = sec²α - sec²β
tan²α - tan²β = (tan²α + 1) - (tan²β + 1)
tan²α - tan²β = tan²α + 1 - tan²β - 1
tan²α - tan²β = tan²α - tan²β
Terbukti.