f(x) = 3x⁴
f'(x) = 12x³ (Opsi C)
f(x) = 5x³
f'(x) = 15x² (Opsi B)
1) 12x³
2) 15x²
Penjelasan dengan langkah-langkah:
kalkulus, diferensial
rumus turunan
f(x)=ax^(n)
f'(x)=n.ax^(n-1)
1) f(x)=3x⁴
f'(x)=4.3x^(4-1)
f'(x)=12x³
2) f(x)=5x³
f'(x)=3.5x^(3-1)
f'(x)=15x²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Nomor 1
f(x) = 3x⁴
f'(x) = 12x³ (Opsi C)
Nomor 2
f(x) = 5x³
f'(x) = 15x² (Opsi B)
1) 12x³
2) 15x²
Penjelasan dengan langkah-langkah:
kalkulus, diferensial
rumus turunan
f(x)=ax^(n)
f'(x)=n.ax^(n-1)
1) f(x)=3x⁴
f'(x)=4.3x^(4-1)
f'(x)=12x³
2) f(x)=5x³
f'(x)=3.5x^(3-1)
f'(x)=15x²