Jawab:= 567b
Penjelasan :Diketahuif(x) = 3x³b
Bentuk akhir darif(6) - f(3)= 3(6³)b - 3(3³)b= 3b(6³ - 3³)= 3b((2(3))³ - 3³)= 3b(2³(3³) - 3³)= 3b(2³(3³) - 1(3³))= 3b(3³(2³ - 1))= 3(3³(2³ - 1)) b= 3(27(8 - 1)) b= 81(7)b= 567b
(xcvi)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
= 567b
Penjelasan :
Diketahui
f(x) = 3x³b
Bentuk akhir dari
f(6) - f(3)
= 3(6³)b - 3(3³)b
= 3b(6³ - 3³)
= 3b((2(3))³ - 3³)
= 3b(2³(3³) - 3³)
= 3b(2³(3³) - 1(3³))
= 3b(3³(2³ - 1))
= 3(3³(2³ - 1)) b
= 3(27(8 - 1)) b
= 81(7)b
= 567b
(xcvi)