Jawaban:
7
Penjelasan dengan langkah-langkah:
4x + y = 9 .........(1)
x + 4y = 6 .......(2)
4x + y = 9 |4| 16x + 4y = 36
x + 4y = 6 |1| x + 4y = 6
____________-
15x = 30
x = 30/15
x = 2
x + 4y = 6
2 + 4y = 6
4y = 6 - 2
4y = 4
y = 4/4
y = 1
Hp = {1,2}
Nilai dari 2x + 3y = 2(2) + 3(1)
= 4 + 3
= 7
..
[tex]\begin{cases} 4x + y = 9 \\ x + 4y = 6 \end{cases}[/tex]
[tex]\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ 6\end{bmatrix}[/tex]
[tex]\begin{aligned} \begin{bmatrix}x \\ y \end{bmatrix} &= \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \left(\frac{1}{4×4 - 1 × 1} \right) \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \left(\frac{1}{15} \right) \begin{bmatrix} 4 & -1 \\ -1& 4\end{bmatrix} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \begin{bmatrix} \frac{4}{15} & -\frac{1}{15} \\ -\frac{1}{15} & \frac{4}{15} \end{bmatrix} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \begin{bmatrix}2 \\ 1 \end{bmatrix} \end{aligned}[/tex]
[tex]\begin{aligned} 2x + 3y &= 2(2) + 3(1) \\&= 4 + 3 \\&= \boxed{\bold{\underline{7}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Jangan berharap terlalu tinggi,}\\ \texttt{Ingat Kamu itu pendek} \end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 16 - 04 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
7
Penjelasan dengan langkah-langkah:
4x + y = 9 .........(1)
x + 4y = 6 .......(2)
4x + y = 9 |4| 16x + 4y = 36
x + 4y = 6 |1| x + 4y = 6
____________-
15x = 30
x = 30/15
x = 2
x + 4y = 6
2 + 4y = 6
4y = 6 - 2
4y = 4
y = 4/4
y = 1
Hp = {1,2}
Nilai dari 2x + 3y = 2(2) + 3(1)
= 4 + 3
= 7
Verified answer
Sistem Persamaan Linear Dua Variabel
[Metode Invers Matriks]
..
[tex]\begin{cases} 4x + y = 9 \\ x + 4y = 6 \end{cases}[/tex]
Bentuk Matriks
[tex]\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 \\ 6\end{bmatrix}[/tex]
Himpunan Penyelesaian
[tex]\begin{aligned} \begin{bmatrix}x \\ y \end{bmatrix} &= \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \left(\frac{1}{4×4 - 1 × 1} \right) \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \left(\frac{1}{15} \right) \begin{bmatrix} 4 & -1 \\ -1& 4\end{bmatrix} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \begin{bmatrix} \frac{4}{15} & -\frac{1}{15} \\ -\frac{1}{15} & \frac{4}{15} \end{bmatrix} \begin{bmatrix} 9 \\ 6\end{bmatrix} \\\begin{bmatrix}x \\ y \end{bmatrix} &= \begin{bmatrix}2 \\ 1 \end{bmatrix} \end{aligned}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} 2x + 3y &= 2(2) + 3(1) \\&= 4 + 3 \\&= \boxed{\bold{\underline{7}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Jangan berharap terlalu tinggi,}\\ \texttt{Ingat Kamu itu pendek} \end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 16 - 04 - 2023}}[/tex]