..
[tex]\boxed{\begin{array}{l||r} a^2=c^2-b^2& a=\sqrt{c^2-b^2}\\b^2=c^2-a^2& b=\sqrt{c^2-a^2}\\ c^2=a^2+b^2& c=\sqrt{a^2+b^2}\end{array}}[/tex]
[tex]\begin{aligned} b^2 &= c^2 - a^2 \\ b &= \sqrt{c^2 - a^2} \\&= \sqrt{(25~m)^2 - (7~m)^2} \\&= \sqrt{625~m^2 - 49~m^2} \\&= \sqrt{576~m^2} \\&= \boxed{\bold{\underline{24~m}}} \end{aligned}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 02 - 07 - 2023}}[/tex]
Penjelasan dengan langkah-langkah:
sisi miring = 25 m
alas = 7m
b = √25^2 - 7^2
b = √625 - 49
b = √576
b = 24 m
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Teorema Pythagoras
..
[tex]\boxed{\begin{array}{l||r} a^2=c^2-b^2& a=\sqrt{c^2-b^2}\\b^2=c^2-a^2& b=\sqrt{c^2-a^2}\\ c^2=a^2+b^2& c=\sqrt{a^2+b^2}\end{array}}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} b^2 &= c^2 - a^2 \\ b &= \sqrt{c^2 - a^2} \\&= \sqrt{(25~m)^2 - (7~m)^2} \\&= \sqrt{625~m^2 - 49~m^2} \\&= \sqrt{576~m^2} \\&= \boxed{\bold{\underline{24~m}}} \end{aligned}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 02 - 07 - 2023}}[/tex]
Penjelasan dengan langkah-langkah:
sisi miring = 25 m
alas = 7m
b = √25^2 - 7^2
b = √625 - 49
b = √576
b = 24 m