Diketahui: x = 71, y = 13, z = x - y
Hasil pengurangan yz dari xy:
xy - yz = xy - y(x - y)
= xy - yx - y²
= y²
= 13²
= 169[tex] [/tex]
⌗SDaze ⋆࿐໋₊
..
[tex]\begin{aligned} xy - yz &= xy - y(x-y)\\&=(71)(13)- (13)(71-13)\\&=(71)(13)- (13)(58) \\&= 923 - 754 \\&= \boxed{\bold{\underline{169}}} \end{aligned}[/tex]
[tex]\begin{aligned} xy - yz &= xy - y(x-y) \\&= xy - xy + y^2 \\&= y^2 \\&= 13^2 \\&= \boxed{\bold{\underline{169}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Selamat Hari Keterbukaan Informasi Nasional}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 30 - 04 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Diketahui: x = 71, y = 13, z = x - y
Hasil pengurangan yz dari xy:
xy - yz = xy - y(x - y)
= xy - yx - y²
= y²
= 13²
= 169[tex] [/tex]
⌗SDaze ⋆࿐໋₊
Algebra
..
Cara Pertama
[tex]\begin{aligned} xy - yz &= xy - y(x-y)\\&=(71)(13)- (13)(71-13)\\&=(71)(13)- (13)(58) \\&= 923 - 754 \\&= \boxed{\bold{\underline{169}}} \end{aligned}[/tex]
Cara Kedua
[tex]\begin{aligned} xy - yz &= xy - y(x-y) \\&= xy - xy + y^2 \\&= y^2 \\&= 13^2 \\&= \boxed{\bold{\underline{169}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Selamat Hari Keterbukaan Informasi Nasional}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 30 - 04 - 2023}}[/tex]