Penyelesaian :
f(x) = √x + 5² - 10² + 3!
f(4) = √4 + 5² - 10² + 3!
f(4) = 2 + 5² - 10² + 3!
f(4) = 2 + ( 5 × 5 ) - 10² + 3!
f(4) = 2 + 25 - 10² + 3!
f(4) = 2 + 25 - ( 10 × 10 ) + 3!
f(4) = 2 + 25 - 100 + 3!
f(4) = 2 + 25 - 100 + ( 3 × 2 × 1 )
f(4) = 2 + 25 - 100 + ( 6 × 1 )
f(4) = 2 + 25 - 100 + 6
f(4) = 27 - 100 - 6
f(4) = ( -73 ) - 6
f(4) = ( -79 )
→Menyederhanakan f(x)
f(x) = √x + 25 - 100 + 6
f(x) = √x - 69
→Mencari nilai f(4)
f(4) = √4 - 69
f(4) = 2 - 69
f(4) = -67
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penyelesaian :
f(x) = √x + 5² - 10² + 3!
f(4) = √4 + 5² - 10² + 3!
f(4) = 2 + 5² - 10² + 3!
f(4) = 2 + ( 5 × 5 ) - 10² + 3!
f(4) = 2 + 25 - 10² + 3!
f(4) = 2 + 25 - ( 10 × 10 ) + 3!
f(4) = 2 + 25 - 100 + 3!
f(4) = 2 + 25 - 100 + ( 3 × 2 × 1 )
f(4) = 2 + 25 - 100 + ( 6 × 1 )
f(4) = 2 + 25 - 100 + 6
f(4) = 27 - 100 - 6
f(4) = ( -73 ) - 6
f(4) = ( -79 )
»Fungsi Komposisi
→Menyederhanakan f(x)
f(x) = √x + 5² - 10² + 3!
f(x) = √x + 25 - 100 + 6
f(x) = √x - 69
→Mencari nilai f(4)
f(4) = √4 - 69
f(4) = 2 - 69
f(4) = -67