Lo común que tienen que se presenta la matriz de conexión de gráficas orientadas y una generalización introducida por Gondran y Minoux para resolver una gran variedad de problemas de caminos, incluyendo diversos problemas de optimización (maximizar o minimizar longitudes, capacidad mínima, probabilidad, etc.), enumeración de caminos, cuenta de caminos, y conexión. Para lograr lo anterior, se tratan a las componentes de las matrices como elementos de una estructura algebraica llamada semianillo o dioide (extensión de un monoide). Se explora la posibilidad de utilizar MATLAB en el manejo de matrices y se dan listados de programas cuyo objetivo es educativo y no de producción. Se pretende rescata run tema que no se ha popularizado debido, en la opinión del autor, a que los originadores Gondran y Minoux (1984) han tratado el tema en forma muy abstracta, orientado a matemáticos y difícil de captar por ingenieros. En este artículo se tratan los temas informalmente y se dan ejemplos ilustrativos (cosa que Gondran y Minoux, no proveen en gran detalle), así como listados de programas en el lenguaje de MATLAB. El tema se presta para seguirlo extendiendo y diseñar proyectos educativos computarizados para el aprendizaje de temas importantes de redes cuyas aplicaciones son muy extensas.
Explicación paso a paso:
:v
1 votes Thanks 1
erikaximenafuquenear
Y más aparte el dice que primero yo estoy PELEANDO por una corona como si ella no se sintiera feliz con eso
erikaximenafuquenear
Y ya no me voy a disculpar porque no es MI CULPA porque me acaban de dar otra corona que yo respondí por mi PROPIA CUENT
erikaximenafuquenear
Porque lo que veo es que aquí me estan viendo como la toxica
erikaximenafuquenear
Y ya dejen de decir que disculpensen y eso si yano comenten más
Respuesta:
Lo común que tienen que se presenta la matriz de conexión de gráficas orientadas y una generalización introducida por Gondran y Minoux para resolver una gran variedad de problemas de caminos, incluyendo diversos problemas de optimización (maximizar o minimizar longitudes, capacidad mínima, probabilidad, etc.), enumeración de caminos, cuenta de caminos, y conexión. Para lograr lo anterior, se tratan a las componentes de las matrices como elementos de una estructura algebraica llamada semianillo o dioide (extensión de un monoide). Se explora la posibilidad de utilizar MATLAB en el manejo de matrices y se dan listados de programas cuyo objetivo es educativo y no de producción. Se pretende rescata run tema que no se ha popularizado debido, en la opinión del autor, a que los originadores Gondran y Minoux (1984) han tratado el tema en forma muy abstracta, orientado a matemáticos y difícil de captar por ingenieros. En este artículo se tratan los temas informalmente y se dan ejemplos ilustrativos (cosa que Gondran y Minoux, no proveen en gran detalle), así como listados de programas en el lenguaje de MATLAB. El tema se presta para seguirlo extendiendo y diseñar proyectos educativos computarizados para el aprendizaje de temas importantes de redes cuyas aplicaciones son muy extensas.
Explicación paso a paso:
:v