Dados dos puntos en una circunferencia, los radios desde el centro de la circunferencia a esos dos puntos forman un ángulo central.
Un ángulo inscrito es un ángulo subtendido en un punto de la circunferencia por otros dos puntos de la circunferencia. Un ángulo inscrito está definido por dos cuerdas de una circunferencia que tienen un extremo común.
Euclides enumera las siguientes proposiciones, entre otras, referidas a la circunferencia:
III.20. En una circunferencia, el ángulo cuyo vértice está en el centro es el doble del ángulo cuyo vértice está en la circunferencia cuando los rayos que forman el ángulo cortan a la circunferencia en los misos dos puntos.
Esta proposición también se llama Teorema del ángulo central: El ángulo central subtendido por dos puntos de una circunferencia es el doble que cualquier ángulo inscrito subtendido por esos dos puntos.
Dados dos puntos en una circunferencia, los radios desde el centro de la circunferencia a esos dos puntos forman un ángulo central.
Un ángulo inscrito es un ángulo subtendido en un punto de la circunferencia por otros dos puntos de la circunferencia. Un ángulo inscrito está definido por dos cuerdas de una circunferencia que tienen un extremo común.
Euclides enumera las siguientes proposiciones, entre otras, referidas a la circunferencia:
III.20. En una circunferencia, el ángulo cuyo vértice está en el centro es el doble del ángulo cuyo vértice está en la circunferencia cuando los rayos que forman el ángulo cortan a la circunferencia en los misos dos puntos.
Esta proposición también se llama Teorema del ángulo central: El ángulo central subtendido por dos puntos de una circunferencia es el doble que cualquier ángulo inscrito subtendido por esos dos puntos.