Fue el precursor de la utilización de la letra e para denotar la base de los logaritmos neperianos. En un escrito sobre ciertos experimentos relacionados con disparos de cañones, escrito por Euler sobre 1727, ya utilizaba en varias ocasiones la letra e en este sentido (quizás por ser la primera letra de exponencial). La idea que representa dicho número ya se conocía hacía más o menos un siglo, pero hasta este momento no había sido representada con un símbolo en concreto. En una carta a Goldbach en 1731 Euler utiliza de nuevo la letra e para, según sus palabras, el número cuyo logaritmo hiperbólico es igual a 1. Esta forma de designar a la base de los logaritmos neperianos apareció en forma impresa por primera vez en la Mechanica del propio Euler
Popularizó la utilización de la letra \pi para denotar la razón entre la longitud de una circunferencia y su diámetro. Aunque ya había sido utilizada por William Jones un año antes del nacimiento de Euler en la publicación Synopsis Palmariorum Matheseos, fue el propio Euler quien al adoptar también dicho símbolo extendió su uso, dada la popularidad de sus escritos.
Introdujo la notación i para \sqrt{-1}. Euler había utilizado el símbolo i para denotar lo que podríamos llamar un número infinito. Por ejemplo, Euler escribía
e^x=\left ( 1+\cfrac{x}{i} \right )^i
Explicación paso a paso:
Leonhard Euler ha sido el matemático más prolífico de la historia en lo que a publicaciones se refiere. Por ello sus aportaciones se extienden por todas las ramas de las matemáticas (hasta creó alguna), tanto pura como aplicada.
Respuesta:
Fue el precursor de la utilización de la letra e para denotar la base de los logaritmos neperianos. En un escrito sobre ciertos experimentos relacionados con disparos de cañones, escrito por Euler sobre 1727, ya utilizaba en varias ocasiones la letra e en este sentido (quizás por ser la primera letra de exponencial). La idea que representa dicho número ya se conocía hacía más o menos un siglo, pero hasta este momento no había sido representada con un símbolo en concreto. En una carta a Goldbach en 1731 Euler utiliza de nuevo la letra e para, según sus palabras, el número cuyo logaritmo hiperbólico es igual a 1. Esta forma de designar a la base de los logaritmos neperianos apareció en forma impresa por primera vez en la Mechanica del propio Euler
Popularizó la utilización de la letra \pi para denotar la razón entre la longitud de una circunferencia y su diámetro. Aunque ya había sido utilizada por William Jones un año antes del nacimiento de Euler en la publicación Synopsis Palmariorum Matheseos, fue el propio Euler quien al adoptar también dicho símbolo extendió su uso, dada la popularidad de sus escritos.
Introdujo la notación i para \sqrt{-1}. Euler había utilizado el símbolo i para denotar lo que podríamos llamar un número infinito. Por ejemplo, Euler escribía
e^x=\left ( 1+\cfrac{x}{i} \right )^i
Explicación paso a paso:
Leonhard Euler ha sido el matemático más prolífico de la historia en lo que a publicaciones se refiere. Por ello sus aportaciones se extienden por todas las ramas de las matemáticas (hasta creó alguna), tanto pura como aplicada.