a = 3
b = 1
Un = 102
.
Un = a + (n - 1)b
Un = a + n(1) + (-1)(1)
Un = a + n - 1
→ Un = a + n - 1
→ 102 = 3 + n - 1
→ 102 - 3 + 1 = n
→ 100 = n
→ n = 100
[tex] \tt S_{n} = \frac{n}{2} (2a + Un) [/tex]
[tex] \tt S_{100} = \frac{100}{2} (2(3) + 102) [/tex]
[tex] \tt S_{100} = 50(6 + 102) [/tex]
[tex] \tt S_{100} = 50(108) [/tex]
[tex] \tt S_{100} = 5.400 [/tex]
[tex]\purple{\boxed{\blue{\boxed{\green{\star{\orange{\ \: \: \mathcal{JK} \: \: \: {\green{\star}}}}}}}}} [/tex]
Penjelasan dengan langkah-langkah:
3 + 4 + 5 .... + 102 = ... ?
Un = a + (n - 1).b
= a + n - 1
nilai n
102 = 3 + n - 1
102 - 3 + 1 = n
100 = n
SN = n/2(2a + Un )
S100 = 100/2(2.3 + 102)
S100 = 5.400
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a = 3
b = 1
Un = 102
.
Un = a + (n - 1)b
Un = a + n(1) + (-1)(1)
Un = a + n - 1
→ Un = a + n - 1
→ 102 = 3 + n - 1
→ 102 - 3 + 1 = n
→ 100 = n
→ n = 100
[tex] \tt S_{n} = \frac{n}{2} (2a + Un) [/tex]
[tex] \tt S_{100} = \frac{100}{2} (2(3) + 102) [/tex]
[tex] \tt S_{100} = 50(6 + 102) [/tex]
[tex] \tt S_{100} = 50(108) [/tex]
[tex] \tt S_{100} = 5.400 [/tex]
.
[tex]\purple{\boxed{\blue{\boxed{\green{\star{\orange{\ \: \: \mathcal{JK} \: \: \: {\green{\star}}}}}}}}} [/tex]
Penjelasan dengan langkah-langkah:
3 + 4 + 5 .... + 102 = ... ?
Un = a + (n - 1).b
= a + n - 1
nilai n
Un = a + n - 1
102 = 3 + n - 1
102 - 3 + 1 = n
100 = n
SN = n/2(2a + Un )
S100 = 100/2(2.3 + 102)
S100 = 5.400