Penjelasan dengan langkah-langkah:
f(x)=x-3, g(x)=2x+4
(gof)^-1(2)?
g{f(x)}=2(x-3)+4=2x-6+4=2x-2, misal (gof)(x)=n
2x-2=(gof)(x)
2x-2=n
2x=n+2 → x=(n+2)/2
(gof)^-1(x)=(n+2)/2=(x+2)/2=½(x+2)
(gof)^-1(2)=½(2+2)=½(4)=2
.
f(x)=x^2 -4 , misal f(x)=n
x^2-4=f(x)
x^2-4=n
x^2=n+4
x=±√n+4
f^-1(x)=±√(n+4)=±√(x+4) → √(x+4) atau -√(n+4)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Penjelasan dengan langkah-langkah:
f(x)=x-3, g(x)=2x+4
(gof)^-1(2)?
g{f(x)}=2(x-3)+4=2x-6+4=2x-2, misal (gof)(x)=n
2x-2=(gof)(x)
2x-2=n
2x=n+2 → x=(n+2)/2
(gof)^-1(x)=(n+2)/2=(x+2)/2=½(x+2)
(gof)^-1(2)=½(2+2)=½(4)=2
.
f(x)=x^2 -4 , misal f(x)=n
x^2-4=f(x)
x^2-4=n
x^2=n+4
x=±√n+4
f^-1(x)=±√(n+4)=±√(x+4) → √(x+4) atau -√(n+4)