Odpowiedź:
1.
Korzystamy ze wzoru (a - b)² = a² - 2ab + b²
x² - 4x + 4 = (x - 2)² = (x - 2)(x - 2)
2.
25x² + 30x + 9 = 0
Obliczamy miejsca zerowe
a = 25 , b = 30 , c = 9
Δ = b² - 4ac = 30² - 4 * 25 * 9 = 900 - 900 = 0
x₁ = x₂ = - b/2a = - 30/50 = - 3/5 = - 0,6
25(x + 0,6)² = 25(x + 0,6)(x + 0,6)
3.
Korzystamy ze wzoru a² - b² = (a - b)(a + b)
9x² - 1 = (3x - 1)(3x + 1)
4.
x² - 6 = (x - √6)(x + √6)
5.
Korzystamy ze wzoru (a + b)² = a² + 2ab + b²
x² + 8x + 16 = (x + 4)² = (x + 4)(x + 4)
6.
4x² + 20x + 25 = 0
a = 4 , b = 20 , c = 25
Δ = b² - 4ac = 20² - 4 * 4 * 25 = 400 - 400 = 0
x₁ = x₂ = - b/2a = - 20/8 = - 2 4/8 = - 2 1/2 = - 2,5
4(x + 2,5)² = 4(x + 2,5)(x + 2,5)
7.
9x² - 16 = (3x - 4)(3x + 4)
8.
x² - 1 = (x - 1)(x + 1)
[tex]x^{2}-4x+4 = (x-2)^{2} = \underline{(x-2)(x-2)}\\\\25x^{2}+30x + 9 =(5x+3)^{2}=(5x+3)(5x+3)=\underline{25(x+0,6)(x+0,6)}\\\\9x^{2}-1 = \underline{(3x+1)(3x-1)}[/tex]
[tex]x^{2}-6 = \underline{(x+\sqrt{6})(x-\sqrt{6})}\\\\x^{2}+8x+16 = (x+4)^{2}=\underline{(x+4)(x+4)}\\\\4x^{2}+20x+25 = (2x+5)^{2} = (2x+5)(2x+5) = \underline{4(x+2,5)(x+2,5)}\\\\9x^{2}-16 = \underline{(3x+4)(3x-4)}\\\\x^{2}-1 = \underline{(x+1)(x-1)}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów skróconego mnożenia:
(a - b)² = a² - 2ab + b²
(a + b)² = a² + 2ab + b²
(a + b)(a - b) = a² - b²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
1.
Korzystamy ze wzoru (a - b)² = a² - 2ab + b²
x² - 4x + 4 = (x - 2)² = (x - 2)(x - 2)
2.
25x² + 30x + 9 = 0
Obliczamy miejsca zerowe
a = 25 , b = 30 , c = 9
Δ = b² - 4ac = 30² - 4 * 25 * 9 = 900 - 900 = 0
x₁ = x₂ = - b/2a = - 30/50 = - 3/5 = - 0,6
25(x + 0,6)² = 25(x + 0,6)(x + 0,6)
3.
Korzystamy ze wzoru a² - b² = (a - b)(a + b)
9x² - 1 = (3x - 1)(3x + 1)
4.
Korzystamy ze wzoru a² - b² = (a - b)(a + b)
x² - 6 = (x - √6)(x + √6)
5.
Korzystamy ze wzoru (a + b)² = a² + 2ab + b²
x² + 8x + 16 = (x + 4)² = (x + 4)(x + 4)
6.
4x² + 20x + 25 = 0
a = 4 , b = 20 , c = 25
Δ = b² - 4ac = 20² - 4 * 4 * 25 = 400 - 400 = 0
x₁ = x₂ = - b/2a = - 20/8 = - 2 4/8 = - 2 1/2 = - 2,5
4(x + 2,5)² = 4(x + 2,5)(x + 2,5)
7.
Korzystamy ze wzoru a² - b² = (a - b)(a + b)
9x² - 16 = (3x - 4)(3x + 4)
8.
Korzystamy ze wzoru a² - b² = (a - b)(a + b)
x² - 1 = (x - 1)(x + 1)
Odpowiedź:
[tex]x^{2}-4x+4 = (x-2)^{2} = \underline{(x-2)(x-2)}\\\\25x^{2}+30x + 9 =(5x+3)^{2}=(5x+3)(5x+3)=\underline{25(x+0,6)(x+0,6)}\\\\9x^{2}-1 = \underline{(3x+1)(3x-1)}[/tex]
[tex]x^{2}-6 = \underline{(x+\sqrt{6})(x-\sqrt{6})}\\\\x^{2}+8x+16 = (x+4)^{2}=\underline{(x+4)(x+4)}\\\\4x^{2}+20x+25 = (2x+5)^{2} = (2x+5)(2x+5) = \underline{4(x+2,5)(x+2,5)}\\\\9x^{2}-16 = \underline{(3x+4)(3x-4)}\\\\x^{2}-1 = \underline{(x+1)(x-1)}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów skróconego mnożenia:
(a - b)² = a² - 2ab + b²
(a + b)² = a² + 2ab + b²
(a + b)(a - b) = a² - b²