Odpowiedź:
215
a)
g(x) = - 3x
g(- 1) = - 3 * (- 1)= 3
g(- 0,5) = - 3 * (- 0,5) = 1,5
g(3) = - 3 * 3 = - 9
g(2/3) = - 3 * 2/3 = - 1 * 2 = - 2
b)
g(x) = 10/x dla x ≠ 0
g(- 1) = 10/(-1)= - 10/1 = - 10
g(- 0,5) = 10/(- 0,5) = - 10/0,5) = - 20
g(3) = 10/3 = 3 1/3
g(2/3) = 10 : 2/3 = 10 * 3/2 = 30/2 = 15
c)
g(x) = 1
Jest to funkcja stała , która dla każdego x przyjmuje wartość 1
g(- 1) = 1
g(- 0,5) = 1
g(3) = 1
g(2/3) = 1
d)
g(x)=5x/(x² - 4) = 5x/[(x-2)(x+ 2)]
Df: x ∈ R - {- 2 , 2 }
g(- 1) = [5 * (- 1)]/[(- 1)² - 4] = - 5/(1 - 4) = - 5/(- 3)= 5/3 = 1 2/3
g(- 0,5) = [5 * (- 0,5)]/[(- 0,5)²- 4]= - 2,5/(0,25 - 4)= - 2,5/(- 3,75)= 2,5/3,75 =
= 0,6666....= 0,(6)
g(3) = (5 * 3)/(3² - 4) = 15/(9 - 4) = 15/5 = 3
g(2/3) = (5 * 2/3)/[(2/3)² - 4]= (10/3) : (4/9 - 4) = 10/3 : (- 3 5/9) =
= 10/3 : (- 32/9) = 10/3 * ( - 9/32) = - 90/96 = - 45/48 = - 15/16
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
215
a)
g(x) = - 3x
g(- 1) = - 3 * (- 1)= 3
g(- 0,5) = - 3 * (- 0,5) = 1,5
g(3) = - 3 * 3 = - 9
g(2/3) = - 3 * 2/3 = - 1 * 2 = - 2
b)
g(x) = 10/x dla x ≠ 0
g(- 1) = 10/(-1)= - 10/1 = - 10
g(- 0,5) = 10/(- 0,5) = - 10/0,5) = - 20
g(3) = 10/3 = 3 1/3
g(2/3) = 10 : 2/3 = 10 * 3/2 = 30/2 = 15
c)
g(x) = 1
Jest to funkcja stała , która dla każdego x przyjmuje wartość 1
g(x) = 1
g(- 1) = 1
g(- 0,5) = 1
g(3) = 1
g(2/3) = 1
d)
g(x)=5x/(x² - 4) = 5x/[(x-2)(x+ 2)]
Df: x ∈ R - {- 2 , 2 }
g(- 1) = [5 * (- 1)]/[(- 1)² - 4] = - 5/(1 - 4) = - 5/(- 3)= 5/3 = 1 2/3
g(- 0,5) = [5 * (- 0,5)]/[(- 0,5)²- 4]= - 2,5/(0,25 - 4)= - 2,5/(- 3,75)= 2,5/3,75 =
= 0,6666....= 0,(6)
g(3) = (5 * 3)/(3² - 4) = 15/(9 - 4) = 15/5 = 3
g(2/3) = (5 * 2/3)/[(2/3)² - 4]= (10/3) : (4/9 - 4) = 10/3 : (- 3 5/9) =
= 10/3 : (- 32/9) = 10/3 * ( - 9/32) = - 90/96 = - 45/48 = - 15/16