Dla odcinka z przyspieszeniem: Wpierw obliczam przyspieszenie
vp=0 więc
Znając przyspieszenie obliczam drogę
Teraz obliczam drogę po osiągnięciu szybkości vk
Ostatecznie
Motocyklista pokonał 500 metrów od momentu ruszenia.
AD 2) Dane m1=m2=m - obie masy są jednakowe T1=20 C
Rozwiązanie
Z zadania wiemy że dostarczono takiej samej energii Q dla miedzi i ołowiu, dodatkowo masa obu jest taka sama, więc
skoro Q i m są sobie równe, to mogę zapisać
Interesuję mnie o ile ogrzał się ołów, więc
Ołów ogrzał się o 800 stopni.
AD 3) Dane v=340 m/s - prędkość dźwięku t=3s
Szukane s
Rozwiązanie
Korzystam ze wzoru ma szybkość w ruchu jednostajnym prostoliniowym. Turysta usłyszał echo odbite od ściany, więc dźwięk od turysty doleciał do ściany, po czym odbił się od niej i powrócił do naszego turysty po 3 sekundach. Więc otrzymaną wcześniej drogę należy podzielić przez 2 (dźwięk pokonał drogę od turysty do ścianki i z powrotem), ponieważ nas interesuje tylko droga od turysty do ścianki
więc
AD 4)
Kąt pomiędzy promieniami (odbitym i padającym) wynosi
więc
Promień padający z powierzchnią zwierciadłą płaskiego tworzy kąt 60 stopni.
AD 5) R1=R2=R3=1 Trzy oporniki można połączyć a) wszystkie szeregowo ___R1___R2___R3___
b) wszystkie równolegle __R1__ |__R2_| |__R3_|
c) dwa szeregowo i jeden do nich równolegle ___R1___R2__ |_____R3____|
d) dwa równolegle i jeden do nich szeregowo __R1__ | |____R3__ |__R2_|
Opory zastępcze a) W przypadku szeregowym opór zastępczy jest sumą oporów Rz=R1+R2+R3=3
b) W przypadku równoległym opór zastępczy obliczamy ze wzoru 1/Rz=1\R1+1\R2+1\R3=3 Rz=1
c) Najpierw obliczam opór zastępczy dla połączenia szeregowego R1 i R2 R12=R1+R2=2 Co schematycznie daj __R12__ |__R3__|
Teraz obliczam opór zastępczy dla połączenia równoległego R12 i R3 1/Rz=1/R12+1/R3=1/2+1=1,5
d) Analogicznie do ponpunktu c) Wpierw obliczam opór zastępczy dla połączenia równoległego R1 i R2 1/R12=1/R1+1/R2=2 R12=1/2 Co daje __R12__R3__
Na koniec obliczam opór zastępczy dla połączenia szeregowego R12 i R3 Rz=R12+R3=0,5+1=1,5
Dane
Vp=0
Vk=20 m/s
t1=10s
t2=20s
Szukane
s=s1+s2
Rozwiązanie
Dla odcinka z przyspieszeniem:
Wpierw obliczam przyspieszenie
vp=0
więc
Znając przyspieszenie obliczam drogę
Teraz obliczam drogę po osiągnięciu szybkości vk
Ostatecznie
Motocyklista pokonał 500 metrów od momentu ruszenia.
AD 2)
Dane
m1=m2=m - obie masy są jednakowe
T1=20 C
Rozwiązanie
Z zadania wiemy że dostarczono takiej samej energii Q dla miedzi i ołowiu, dodatkowo masa obu jest taka sama, więc
skoro Q i m są sobie równe, to mogę zapisać
Interesuję mnie o ile ogrzał się ołów, więc
Ołów ogrzał się o 800 stopni.
AD 3)
Dane
v=340 m/s - prędkość dźwięku
t=3s
Szukane
s
Rozwiązanie
Korzystam ze wzoru ma szybkość w ruchu jednostajnym prostoliniowym.
Turysta usłyszał echo odbite od ściany, więc dźwięk od turysty doleciał do ściany, po czym odbił się od niej i powrócił do naszego turysty po 3 sekundach.
Więc otrzymaną wcześniej drogę należy podzielić przez 2 (dźwięk pokonał drogę od turysty do ścianki i z powrotem), ponieważ nas interesuje tylko droga od turysty do ścianki
więc
AD 4)
Kąt pomiędzy promieniami (odbitym i padającym) wynosi
więc
Promień padający z powierzchnią zwierciadłą płaskiego tworzy kąt 60 stopni.
AD 5)
R1=R2=R3=1
Trzy oporniki można połączyć
a) wszystkie szeregowo
___R1___R2___R3___
b) wszystkie równolegle
__R1__
|__R2_|
|__R3_|
c) dwa szeregowo i jeden do nich równolegle
___R1___R2__
|_____R3____|
d) dwa równolegle i jeden do nich szeregowo
__R1__
| |____R3__
|__R2_|
Opory zastępcze
a)
W przypadku szeregowym opór zastępczy jest sumą oporów
Rz=R1+R2+R3=3
b)
W przypadku równoległym opór zastępczy obliczamy ze wzoru
1/Rz=1\R1+1\R2+1\R3=3
Rz=1
c)
Najpierw obliczam opór zastępczy dla połączenia szeregowego R1 i R2
R12=R1+R2=2
Co schematycznie daj
__R12__
|__R3__|
Teraz obliczam opór zastępczy dla połączenia równoległego R12 i R3
1/Rz=1/R12+1/R3=1/2+1=1,5
d)
Analogicznie do ponpunktu c)
Wpierw obliczam opór zastępczy dla połączenia równoległego R1 i R2
1/R12=1/R1+1/R2=2
R12=1/2
Co daje
__R12__R3__
Na koniec obliczam opór zastępczy dla połączenia szeregowego R12 i R3
Rz=R12+R3=0,5+1=1,5
Wszystkie wartości w ohmach.