Odpowiedź:
[tex]25^{1 - log_5 2} = 25*25^{- log_5 2} = 25*( 5^2)^{- log_5 2} = 25*5^{ - 2 log_5 2} =[/tex]
[tex]= 25*5^{log_5 2^{-2}} = 25*\frac{1}{4} = \frac{25}{4} = 6,25[/tex]
-------------------------------------------------
1) [tex]36^{log_6 4} = ( 6^2)^{log_6 4} = 6^{2log_6 4} = 6^{log_6 4^2} = 4^2 = 16[/tex]
2 ) [tex]27^{log_3 64} = ( 3^3)^{log_3 64} = 3^{3 log_3 64} = 3^{log_3 64^3} = 64^3[/tex]
3 ) [tex]3^{2 + log_3 5} = 3^2*3^{log_3 5} = 9*5 = 45[/tex]
4 ) [tex]16^{1 - log_2 3} = 16^1 *16^{- log_2 3} = 16* (2^4)^{-log_2 3} = 16*2^{-4 log_2 3} =[/tex]
[tex]= 16*2^{log_2 3^{-4}} = 16*3^{-4} = 16*\frac{1}{3^4} = \frac{16}{81}[/tex]
------------------------------------------------------------------------------------------
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]25^{1 - log_5 2} = 25*25^{- log_5 2} = 25*( 5^2)^{- log_5 2} = 25*5^{ - 2 log_5 2} =[/tex]
[tex]= 25*5^{log_5 2^{-2}} = 25*\frac{1}{4} = \frac{25}{4} = 6,25[/tex]
-------------------------------------------------
1) [tex]36^{log_6 4} = ( 6^2)^{log_6 4} = 6^{2log_6 4} = 6^{log_6 4^2} = 4^2 = 16[/tex]
2 ) [tex]27^{log_3 64} = ( 3^3)^{log_3 64} = 3^{3 log_3 64} = 3^{log_3 64^3} = 64^3[/tex]
3 ) [tex]3^{2 + log_3 5} = 3^2*3^{log_3 5} = 9*5 = 45[/tex]
4 ) [tex]16^{1 - log_2 3} = 16^1 *16^{- log_2 3} = 16* (2^4)^{-log_2 3} = 16*2^{-4 log_2 3} =[/tex]
[tex]= 16*2^{log_2 3^{-4}} = 16*3^{-4} = 16*\frac{1}{3^4} = \frac{16}{81}[/tex]
------------------------------------------------------------------------------------------
Szczegółowe wyjaśnienie: