Odpowiedź:
z.3
A = ( 3, - 5) B = ( - 3, 9)
I AB I² = ( - 3 - 3)² + ( 9 - (-5))² = 36 + 196 = 232 = 4*58
I AB I = 2[tex]\sqrt{58}[/tex]
------------------
[tex]x_s = \frac{3 - 3}{2} = 0[/tex] [tex]y_s = \frac{- 5 + 9}{2} = 2[/tex]
S = ( 0, 2 )
==========
z.4
[tex]a_1 = - 5[/tex] [tex]r = - 2[/tex]
więc [tex]a_{42} = a_1 + 41*r = - 5 + 41*(-2) = - 5 - 82 = - 87[/tex]
[tex]s_{42} = \frac{a_1 + a_{42}}{2} * 42 = 21*( - 5 - 87) = 21*( - 92) = - 40 572[/tex]
==================================================
z.5
[tex]a_1 = 2[/tex] [tex]q = \sqrt{5}[/tex]
więc
[tex]a_3 =a_1*q^2 = 2*(\sqrt{5} )^{2} = 2*5 = 10[/tex]
[tex]a_5 =a_3*q^2 =[/tex] 10*5 = 50
[tex]a_6 = a_5*q = 50*\sqrt{5} = 50\sqrt{5}[/tex]
=========================
Szczegółowe wyjaśnienie:
[tex]a_n =a_1*q^{n - 1}[/tex] - n - ty wyraz ciągu geometrycznego.
[tex]a_n = a_1 + ( n - 1)*r[/tex] - n -ty wyraz ciągu arytmetycznego.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
z.3
A = ( 3, - 5) B = ( - 3, 9)
I AB I² = ( - 3 - 3)² + ( 9 - (-5))² = 36 + 196 = 232 = 4*58
I AB I = 2[tex]\sqrt{58}[/tex]
------------------
[tex]x_s = \frac{3 - 3}{2} = 0[/tex] [tex]y_s = \frac{- 5 + 9}{2} = 2[/tex]
S = ( 0, 2 )
==========
z.4
[tex]a_1 = - 5[/tex] [tex]r = - 2[/tex]
więc [tex]a_{42} = a_1 + 41*r = - 5 + 41*(-2) = - 5 - 82 = - 87[/tex]
[tex]s_{42} = \frac{a_1 + a_{42}}{2} * 42 = 21*( - 5 - 87) = 21*( - 92) = - 40 572[/tex]
==================================================
z.5
[tex]a_1 = 2[/tex] [tex]q = \sqrt{5}[/tex]
więc
[tex]a_3 =a_1*q^2 = 2*(\sqrt{5} )^{2} = 2*5 = 10[/tex]
[tex]a_5 =a_3*q^2 =[/tex] 10*5 = 50
[tex]a_6 = a_5*q = 50*\sqrt{5} = 50\sqrt{5}[/tex]
=========================
Szczegółowe wyjaśnienie:
[tex]a_n =a_1*q^{n - 1}[/tex] - n - ty wyraz ciągu geometrycznego.
[tex]a_n = a_1 + ( n - 1)*r[/tex] - n -ty wyraz ciągu arytmetycznego.
a) a= 5 cm b= 5 cm c =10 cm
b) a=4dm b=8dm c=15dm