[tex]\huge\begin{array}{ccc}\sqrt2\cdot\left(\sqrt{4+\sqrt7}-\sqrt{4-\sqrt7}-\sqrt2\right)=0\end{array}[/tex]
Definicja pierwiastka kwadratowego:
[tex]\sqrt{a}=b\iff b^2=a\qquad\text{dla}\ a,b\geq0[/tex]
Twierdzenia:
[tex]\sqrt{a^2}=a\\\\\sqrt{a}\cdot\sqrt{a}=a\\\\\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\\\\\text{dla}\ a,b\geq0[/tex]
[tex]\sqrt2\cdot\left(\sqrt{4+\sqrt7}-\sqrt{4-\sqrt7}-\sqrt2\right)\\\\=\sqrt2\cdot\sqrt{4+\sqrt7}-\sqrt2\cdot\sqrt{4-\sqrt7}-\sqrt2\cdot\sqrt2\\\\=\sqrt{2\left(4+\sqrt7\right)}-\sqrt{2\left(4-\sqrt7\right)}-2\\\\=\sqrt{2\cdot4+2\cdot\sqrt7}-\sqrt{2\cdot4-2\cdot\sqrt7}-2\\\\=\sqrt{8+2\sqrt7}-\sqrt{8-2\sqrt7}-2}\\\\=\sqrt{7+2\sqrt7+1}-\sqrt{7-2\sqrt7+1}-2\\\\=\sqrt{\left(\sqrt7\right)^2+2\cdot\sqrt7\cdot1+1^2}-\sqrt{\left(\sqrt7\right)^2-2\cdot\sqrt7\cdot1+1^2}-2[/tex]
Stosujemy wzory skróconego mnożenia:
[tex](a\pm b)^2=a^2\pm2ab+b^2[/tex]
[tex]=\sqrt{\left(\sqrt7+1\right)^2}-\sqrt{\left(\sqrt7-1\right)^2}-2[/tex]
Jako, że
[tex]\sqrt7+1 > 0\ \wedge\ \sqrt7-1 > 0[/tex]
to otrzymujemy:
[tex]=(\sqrt7+1)-(\sqrt7-1)-2\\\\=\sqrt7+1-\sqrt7+1-2\\\\=0[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\huge\begin{array}{ccc}\sqrt2\cdot\left(\sqrt{4+\sqrt7}-\sqrt{4-\sqrt7}-\sqrt2\right)=0\end{array}[/tex]
Arytmetyka.
Definicja pierwiastka kwadratowego:
[tex]\sqrt{a}=b\iff b^2=a\qquad\text{dla}\ a,b\geq0[/tex]
Twierdzenia:
[tex]\sqrt{a^2}=a\\\\\sqrt{a}\cdot\sqrt{a}=a\\\\\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\\\\\text{dla}\ a,b\geq0[/tex]
ROZWIĄZANIE:
[tex]\sqrt2\cdot\left(\sqrt{4+\sqrt7}-\sqrt{4-\sqrt7}-\sqrt2\right)\\\\=\sqrt2\cdot\sqrt{4+\sqrt7}-\sqrt2\cdot\sqrt{4-\sqrt7}-\sqrt2\cdot\sqrt2\\\\=\sqrt{2\left(4+\sqrt7\right)}-\sqrt{2\left(4-\sqrt7\right)}-2\\\\=\sqrt{2\cdot4+2\cdot\sqrt7}-\sqrt{2\cdot4-2\cdot\sqrt7}-2\\\\=\sqrt{8+2\sqrt7}-\sqrt{8-2\sqrt7}-2}\\\\=\sqrt{7+2\sqrt7+1}-\sqrt{7-2\sqrt7+1}-2\\\\=\sqrt{\left(\sqrt7\right)^2+2\cdot\sqrt7\cdot1+1^2}-\sqrt{\left(\sqrt7\right)^2-2\cdot\sqrt7\cdot1+1^2}-2[/tex]
Stosujemy wzory skróconego mnożenia:
[tex](a\pm b)^2=a^2\pm2ab+b^2[/tex]
[tex]=\sqrt{\left(\sqrt7+1\right)^2}-\sqrt{\left(\sqrt7-1\right)^2}-2[/tex]
Jako, że
[tex]\sqrt7+1 > 0\ \wedge\ \sqrt7-1 > 0[/tex]
to otrzymujemy:
[tex]=(\sqrt7+1)-(\sqrt7-1)-2\\\\=\sqrt7+1-\sqrt7+1-2\\\\=0[/tex]