Odpowiedź:
Odpowiednio
z i √z²+3 będą przeciwprostokątnymi
y i √y²+2 przyprostokątnymi leżącymi naprzeciw α
x i √x²+1 przyprostokątnymi leżącymi naprzeciw β
[tex]\displaystyle sin\alpha =\frac{y}{z} =\frac{\sqrt{y^{2}+2 } }{\sqrt{z^{2}+3 } } \quad \Rightarrow y\sqrt{z^{2}+3 } =z\sqrt{y^{2} +2} /^2\quad \Rightarrow \\y^2z^{2} +3y^{2} =z^{2} y^{2} +2z^{2} \quad \Rightarrow 3y^{2} =2z^{2} /\sqrt{} \quad \Rightarrow y\sqrt{3} =z\sqrt{2} \quad \Rightarrow\frac{y}{z} =\frac{\sqrt{2} }{\sqrt{3} } \\[/tex]
[tex]\displaystyle cos\alpha =\frac{x}{z} =\frac{\sqrt{x^{2} +1} }{\sqrt{z^{2}+3 } } \quad \Rightarrow z\sqrt{x^{2} +1} =x\sqrt{z^{2}+3 } /^2 \quad \Rightarrow \\z^{2} x^{2} +z^{2} =x^{2} z^{2} +3x^{2} \quad \Rightarrow z^{2} =3x^{2} /\sqrt{x} \quad \Rightarrow z=x\sqrt{3} \quad \Rightarrow \frac{x}{z} =\frac{1}{\sqrt{3} }[/tex]
Bez straty ogólności możemy określić nasze trójkąty
x=1 ,y= √2 , z=√3 i odpowiednio drugi √2 , √4 .√6
[tex]\displaystyle sin\alpha =\frac{\sqrt{2} }{\sqrt{3} } \quad cos\beta =\frac{\sqrt{2} }{\sqrt{3} }\quad sin\beta =\frac{1}{\sqrt{3} } \quad cos\alpha =\frac{1}{\sqrt{3} } \quad \\tg\alpha= \sqrt{2} \quad tg\beta =\frac{1}{ \sqrt{2} } \\sin(\alpha -\beta )=sin\alpha cos\beta -cos\alpha sin\beta \\cos(\alpha -\beta )=cos\alpha cos\beta +sin\alpha sin\beta \\[/tex]
[tex]\displaystyle sin(\alpha -\beta )=\frac{\sqrt{2} }{\sqrt{3} } \cdot\frac{\sqrt{2} }{\sqrt{3} }-\frac{1}{\sqrt{3} } \cdot\frac{1}{\sqrt{3} } =\frac{2}{3} -\frac{1}{3} =\frac{1}{3} \\cos(\alpha -\beta )=\frac{1}{\sqrt{3} } \cdot\frac{\sqrt{2} }{\sqrt{3} } +\frac{\sqrt{2} }{\sqrt{3} } \cdot\frac{1}{\sqrt{3} } =\frac{2\sqrt{2} }{3} \\[/tex]
[tex]\displaystyle \frac{sin(\alpha -\beta )\cdot cos(\alpha -\beta )}{tg\alpha -tg\beta } =\frac{\frac{1}{3}\cdot\frac{2\sqrt{2} }{3} }{\sqrt{2}-\frac{1}{\sqrt{2} } } =\frac{2\sqrt{2} }{9} \cdot\frac{2}{\sqrt{2} } =\frac{4}{9}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Odpowiednio
z i √z²+3 będą przeciwprostokątnymi
y i √y²+2 przyprostokątnymi leżącymi naprzeciw α
x i √x²+1 przyprostokątnymi leżącymi naprzeciw β
[tex]\displaystyle sin\alpha =\frac{y}{z} =\frac{\sqrt{y^{2}+2 } }{\sqrt{z^{2}+3 } } \quad \Rightarrow y\sqrt{z^{2}+3 } =z\sqrt{y^{2} +2} /^2\quad \Rightarrow \\y^2z^{2} +3y^{2} =z^{2} y^{2} +2z^{2} \quad \Rightarrow 3y^{2} =2z^{2} /\sqrt{} \quad \Rightarrow y\sqrt{3} =z\sqrt{2} \quad \Rightarrow\frac{y}{z} =\frac{\sqrt{2} }{\sqrt{3} } \\[/tex]
[tex]\displaystyle cos\alpha =\frac{x}{z} =\frac{\sqrt{x^{2} +1} }{\sqrt{z^{2}+3 } } \quad \Rightarrow z\sqrt{x^{2} +1} =x\sqrt{z^{2}+3 } /^2 \quad \Rightarrow \\z^{2} x^{2} +z^{2} =x^{2} z^{2} +3x^{2} \quad \Rightarrow z^{2} =3x^{2} /\sqrt{x} \quad \Rightarrow z=x\sqrt{3} \quad \Rightarrow \frac{x}{z} =\frac{1}{\sqrt{3} }[/tex]
Bez straty ogólności możemy określić nasze trójkąty
x=1 ,y= √2 , z=√3 i odpowiednio drugi √2 , √4 .√6
[tex]\displaystyle sin\alpha =\frac{\sqrt{2} }{\sqrt{3} } \quad cos\beta =\frac{\sqrt{2} }{\sqrt{3} }\quad sin\beta =\frac{1}{\sqrt{3} } \quad cos\alpha =\frac{1}{\sqrt{3} } \quad \\tg\alpha= \sqrt{2} \quad tg\beta =\frac{1}{ \sqrt{2} } \\sin(\alpha -\beta )=sin\alpha cos\beta -cos\alpha sin\beta \\cos(\alpha -\beta )=cos\alpha cos\beta +sin\alpha sin\beta \\[/tex]
[tex]\displaystyle sin(\alpha -\beta )=\frac{\sqrt{2} }{\sqrt{3} } \cdot\frac{\sqrt{2} }{\sqrt{3} }-\frac{1}{\sqrt{3} } \cdot\frac{1}{\sqrt{3} } =\frac{2}{3} -\frac{1}{3} =\frac{1}{3} \\cos(\alpha -\beta )=\frac{1}{\sqrt{3} } \cdot\frac{\sqrt{2} }{\sqrt{3} } +\frac{\sqrt{2} }{\sqrt{3} } \cdot\frac{1}{\sqrt{3} } =\frac{2\sqrt{2} }{3} \\[/tex]
[tex]\displaystyle \frac{sin(\alpha -\beta )\cdot cos(\alpha -\beta )}{tg\alpha -tg\beta } =\frac{\frac{1}{3}\cdot\frac{2\sqrt{2} }{3} }{\sqrt{2}-\frac{1}{\sqrt{2} } } =\frac{2\sqrt{2} }{9} \cdot\frac{2}{\sqrt{2} } =\frac{4}{9}[/tex]