Odpowiedź:
[tex]A = (4,\boxed{-1})[/tex]
Szczegółowe wyjaśnienie:
[tex]r = \sqrt{17}\\x = 4\\y = ?[/tex]
[tex]x^{2}+y^{2} = r^{2}\\\\y = \pm\sqrt{r^{2}-x^{2}}[/tex]
w IV ćwiartce mamy:
[tex]y = -\sqrt{r^{2}-x^{2}}\\\\y =- \sqrt{\sqrt{17}^{2}-4^{2}}\\\\y = -\sqrt{17-16}\\\\y = -\sqrt{1}\\\\\underline{y = -1}\\\\\boxed{A = (4, -1)}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]A = (4,\boxed{-1})[/tex]
Szczegółowe wyjaśnienie:
[tex]r = \sqrt{17}\\x = 4\\y = ?[/tex]
[tex]x^{2}+y^{2} = r^{2}\\\\y = \pm\sqrt{r^{2}-x^{2}}[/tex]
w IV ćwiartce mamy:
[tex]y = -\sqrt{r^{2}-x^{2}}\\\\y =- \sqrt{\sqrt{17}^{2}-4^{2}}\\\\y = -\sqrt{17-16}\\\\y = -\sqrt{1}\\\\\underline{y = -1}\\\\\boxed{A = (4, -1)}[/tex]