Odpowiedź:
[tex]x\in(-7,+\infty)[/tex]
Szczegółowe wyjaśnienie:
[tex]\left(\frac{9}{16}\right)^{x-2}*\left(\frac{80}{27}\right)^{x-2} < \left(1\frac{2}{3}\right)^{2x+5}\\\\\left(\frac{9}{16}*\frac{80}{27}\right)^{x-2} < \left(1\frac{2}{3}\right)^{2x+5}\\\\\left(\frac{1}{1}*\frac{5}{3}\right)^{x-2} < \left(\frac{5}{3}\right)^{2x+5}\\\\\left(\frac{5}{3}\right)^{x-2} < \left(\frac{5}{3}\right)^{2x+5}\\\\\text{Poniewa\.z }\frac{5}{3} > 1\text{, to}\\\\x-2 < 2x+5\\\\x-2x < 5+2\\\\-x < 7\ |:(-1)\\\\x > -7\\\\x\in(-7,+\infty)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]x\in(-7,+\infty)[/tex]
Szczegółowe wyjaśnienie:
[tex]\left(\frac{9}{16}\right)^{x-2}*\left(\frac{80}{27}\right)^{x-2} < \left(1\frac{2}{3}\right)^{2x+5}\\\\\left(\frac{9}{16}*\frac{80}{27}\right)^{x-2} < \left(1\frac{2}{3}\right)^{2x+5}\\\\\left(\frac{1}{1}*\frac{5}{3}\right)^{x-2} < \left(\frac{5}{3}\right)^{2x+5}\\\\\left(\frac{5}{3}\right)^{x-2} < \left(\frac{5}{3}\right)^{2x+5}\\\\\text{Poniewa\.z }\frac{5}{3} > 1\text{, to}\\\\x-2 < 2x+5\\\\x-2x < 5+2\\\\-x < 7\ |:(-1)\\\\x > -7\\\\x\in(-7,+\infty)[/tex]