Odpowiedź:
z.1
α = 360° - 216° = 144°
lub α = 2*72° = 144°
β = 0,5*216° = 108°
L = [tex]\frac{144^o}{360^o} *2\pi *r = \frac{144}{360} *2\pi *3 = \frac{144}{60} \pi = 2,4\pi[/tex]
===========================================
z.2
r = 6
P = r² - [tex]\frac{1}{4} \pi *r^2 = 6^2 - 0,25*\pi *6^2 = 36 - 9\pi[/tex]
=========================================
z,5
d = I AB I =2 r = 2*1 = 2
Pk = 0,5 d² = 0,5*2² = 0,5*4 = 2
P = 0,5 Pk - 0,5*2 = 1
====================
Pk - pole kwadratu
-----------------------------------------
z.4
S = ( 2, 0) r = 5 y = - 1
Równanie okręgu
( x - 2)² + ( y - 0)² = 5²
(x - 2)² + y² = 25
Wstawiamy ( - 1 ) za y:
x² - 4 x + 4 + 1 = 24
x² - 4 x - 19 = 0
Δ = 16 - 4*1*( - 19) = 16 + 76 = 92 = 4*23
√Δ = 2[tex]\sqrt{23}[/tex]
x = [tex]\frac{4 - 2\sqrt{23} }{2*1} = 2 - \sqrt{23}[/tex] lub x = [tex]\frac{4 + 2\sqrt{23} }{2} = 2 + \sqrt{23}[/tex]
A = ( 2 - [tex]\sqrt{23} , - 1)[/tex] B = ( 2 + [tex]\sqrt{23}[/tex] , - 1)
I AB I² = ( 2 + [tex]\sqrt{23} - ( 2 - \sqrt{23} ))^2 + ( - 1 - (-1))^2 =[/tex] ( 2[tex]\sqrt{23} )^2 + 0^2[/tex]
I AB I = 2[tex]\sqrt{23}[/tex]
=================
z.3
a = x b = 3 x c = 2 r = 20
Mamy
a² + b² = c²
x² + ( 3 x)² = 20²
x² + 9 x² = 400
10 x² = 400 / : 10
x² = 40 = 4*10
x = [tex]\sqrt{4*10} = 2\sqrt{10}[/tex]
a = 2[tex]\sqrt{10}[/tex] b = 6[tex]\sqrt{10}[/tex] c = 20
Obwód
L =a + b + c = 2[tex]\sqrt{10} + 6\sqrt{10} + 20 = 8\sqrt{10} + 20[/tex]
==========================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
z.1
α = 360° - 216° = 144°
lub α = 2*72° = 144°
β = 0,5*216° = 108°
L = [tex]\frac{144^o}{360^o} *2\pi *r = \frac{144}{360} *2\pi *3 = \frac{144}{60} \pi = 2,4\pi[/tex]
===========================================
z.2
r = 6
P = r² - [tex]\frac{1}{4} \pi *r^2 = 6^2 - 0,25*\pi *6^2 = 36 - 9\pi[/tex]
=========================================
z,5
d = I AB I =2 r = 2*1 = 2
Pk = 0,5 d² = 0,5*2² = 0,5*4 = 2
P = 0,5 Pk - 0,5*2 = 1
====================
Pk - pole kwadratu
-----------------------------------------
z.4
S = ( 2, 0) r = 5 y = - 1
Równanie okręgu
( x - 2)² + ( y - 0)² = 5²
(x - 2)² + y² = 25
Wstawiamy ( - 1 ) za y:
x² - 4 x + 4 + 1 = 24
x² - 4 x - 19 = 0
Δ = 16 - 4*1*( - 19) = 16 + 76 = 92 = 4*23
√Δ = 2[tex]\sqrt{23}[/tex]
x = [tex]\frac{4 - 2\sqrt{23} }{2*1} = 2 - \sqrt{23}[/tex] lub x = [tex]\frac{4 + 2\sqrt{23} }{2} = 2 + \sqrt{23}[/tex]
A = ( 2 - [tex]\sqrt{23} , - 1)[/tex] B = ( 2 + [tex]\sqrt{23}[/tex] , - 1)
I AB I² = ( 2 + [tex]\sqrt{23} - ( 2 - \sqrt{23} ))^2 + ( - 1 - (-1))^2 =[/tex] ( 2[tex]\sqrt{23} )^2 + 0^2[/tex]
I AB I = 2[tex]\sqrt{23}[/tex]
=================
z.3
a = x b = 3 x c = 2 r = 20
Mamy
a² + b² = c²
x² + ( 3 x)² = 20²
x² + 9 x² = 400
10 x² = 400 / : 10
x² = 40 = 4*10
x = [tex]\sqrt{4*10} = 2\sqrt{10}[/tex]
a = 2[tex]\sqrt{10}[/tex] b = 6[tex]\sqrt{10}[/tex] c = 20
Obwód
L =a + b + c = 2[tex]\sqrt{10} + 6\sqrt{10} + 20 = 8\sqrt{10} + 20[/tex]
==========================================
Szczegółowe wyjaśnienie: