Odpowiedź:
I [tex]\sqrt12} - 5[/tex] I = - ( [tex]\sqrt{12} - 5 ) = 5 - \sqrt{12} = 5 - \sqrt{4*3} = 5 - 2\sqrt{3}[/tex]
bo [tex]\sqrt{12} - 5 < 0[/tex]
I [tex]\sqrt{3} - 2[/tex] I = - ( [tex]\sqrt{3} - 2) = 2 - \sqrt{3}[/tex] bo [tex]\sqrt{3} - 2 < 0[/tex]
I 4 - [tex]\sqrt{3}[/tex] I = 4 - [tex]\sqrt{3}[/tex] bo 4 - [tex]\sqrt{3} > 0[/tex]
więc
... = [tex]\frac{5 - \sqrt{12} }{2 - \sqrt{3} } + 4 - \sqrt{3} = \frac{5 -2\sqrt{3} }{2- \sqrt{3} } *\frac{2 + \sqrt{3} }{2 + \sqrt{3} } + 4 - \sqrt{3} =[/tex]
[tex]= \frac{10 + 5\sqrt{3}- 4\sqrt{3} -2*3 }{4 - 3} + 4 - \sqrt{3} = 4 + \sqrt{3} + 4 - \sqrt{3} = 8[/tex]
Szczegółowe wyjaśnienie:
I a I = a dla a ≥ 0
I a I = - a dla x < 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
I [tex]\sqrt12} - 5[/tex] I = - ( [tex]\sqrt{12} - 5 ) = 5 - \sqrt{12} = 5 - \sqrt{4*3} = 5 - 2\sqrt{3}[/tex]
bo [tex]\sqrt{12} - 5 < 0[/tex]
I [tex]\sqrt{3} - 2[/tex] I = - ( [tex]\sqrt{3} - 2) = 2 - \sqrt{3}[/tex] bo [tex]\sqrt{3} - 2 < 0[/tex]
I 4 - [tex]\sqrt{3}[/tex] I = 4 - [tex]\sqrt{3}[/tex] bo 4 - [tex]\sqrt{3} > 0[/tex]
więc
... = [tex]\frac{5 - \sqrt{12} }{2 - \sqrt{3} } + 4 - \sqrt{3} = \frac{5 -2\sqrt{3} }{2- \sqrt{3} } *\frac{2 + \sqrt{3} }{2 + \sqrt{3} } + 4 - \sqrt{3} =[/tex]
[tex]= \frac{10 + 5\sqrt{3}- 4\sqrt{3} -2*3 }{4 - 3} + 4 - \sqrt{3} = 4 + \sqrt{3} + 4 - \sqrt{3} = 8[/tex]
Szczegółowe wyjaśnienie:
I a I = a dla a ≥ 0
I a I = - a dla x < 0