Wielkości służące do opisu ruchu drgającego.
Amplituda drgań, to największe wychylenie z położenia równowagi. Oznaczamy ją literą A. Jednostką amplitudy jest 1 metr (1 m).
Okres drgań to czas jednego pełnego drgania. Oznaczamy go literą T. Jednostką okresu jest 1 sekunda (1 s).
Częstotliwość jest to liczba drgań w jednostce czasu (w ciągu jednej sekundy). Oznaczamy ją literą f. Jej podstawową jednostką jest herc (1 Hz).
[tex]f = \frac{1}{T}[/tex]
(związek częstotliwości z okresem)
Wykres I.
T = 4 s
A = 1 m
f = ?
[tex]f = \frac{1}{T} = \frac{1}{4 \ s} = \boxed{0,25 \ Hz}[/tex]
Odp. Częstotliwość wynosi 0,25 Hz.
Wykres II.
A = 4 m
Wykres III.
T = 2 s
A = 2 cm
[tex]f = \frac{1}{T} = \frac{1}{2 \ s} =\boxed{ 0,5 \ Hz}[/tex]
Odp. Częstotliwość wynosi 0,5 Hz.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Wielkości służące do opisu ruchu drgającego.
Amplituda drgań, to największe wychylenie z położenia równowagi. Oznaczamy ją literą A. Jednostką amplitudy jest 1 metr (1 m).
Okres drgań to czas jednego pełnego drgania. Oznaczamy go literą T. Jednostką okresu jest 1 sekunda (1 s).
Częstotliwość jest to liczba drgań w jednostce czasu (w ciągu jednej sekundy). Oznaczamy ją literą f. Jej podstawową jednostką jest herc (1 Hz).
[tex]f = \frac{1}{T}[/tex]
(związek częstotliwości z okresem)
Wykres I.
T = 4 s
A = 1 m
f = ?
[tex]f = \frac{1}{T} = \frac{1}{4 \ s} = \boxed{0,25 \ Hz}[/tex]
Odp. Częstotliwość wynosi 0,25 Hz.
Wykres II.
T = 4 s
A = 4 m
f = ?
[tex]f = \frac{1}{T} = \frac{1}{4 \ s} = \boxed{0,25 \ Hz}[/tex]
Odp. Częstotliwość wynosi 0,25 Hz.
Wykres III.
T = 2 s
A = 2 cm
f = ?
[tex]f = \frac{1}{T} = \frac{1}{2 \ s} =\boxed{ 0,5 \ Hz}[/tex]
Odp. Częstotliwość wynosi 0,5 Hz.