Odpowiedź:
a)
(x - 7)(2x + 5)(x² - 4) = 0
(x - 7)(2x + 5)(x - 2)(x + 2) = 0
x - 7 = 0 ∨ 2x + 5 = 0 ∨ x - 2 = 0 ∨ x + 2 = 0
x = 7 ∨ x = - 5/2 ∨ x = 2 ∨ x = - 2
x = 7 ∨ x = - 2 1/2 ∨ x = 2 ∨ x = - 2
x = { - 2 1/2 , - 2 , 2 , 7 }
b)
x³ - 9x² + 2x - 18 = 0
x²(x - 9) + 2(x - 9) = 0
(x - 9)(x² + 2) = 0
(x - 9)(x - √2)(x + √2) = 0
x - 9 = 0 ∨ x - √2 = 0 ∨ x + √2 = 0
x = 9 ∨ x = √2 ∨ x = - √2
x = { - √2 , √2 , 9 }
c)
x/(x - 1) = (x + 2)/x
założenie:
x - 1 ≠ 0 ∧ x ≠ 0
x ≠ 1 ∧ x ≠ 0
D: x ∈ R\{0 , 1 }
x * x = (x - 1)(x + 2)
x² = x² - x + 2x - 2
x² = x² + x - 2
x² - x² - x = - 2
- x = - 2 | * (- 1)
x = 2
∨ - znaczy "lub"
∧ - znaczy "i"
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
(x - 7)(2x + 5)(x² - 4) = 0
(x - 7)(2x + 5)(x - 2)(x + 2) = 0
x - 7 = 0 ∨ 2x + 5 = 0 ∨ x - 2 = 0 ∨ x + 2 = 0
x = 7 ∨ x = - 5/2 ∨ x = 2 ∨ x = - 2
x = 7 ∨ x = - 2 1/2 ∨ x = 2 ∨ x = - 2
x = { - 2 1/2 , - 2 , 2 , 7 }
b)
x³ - 9x² + 2x - 18 = 0
x²(x - 9) + 2(x - 9) = 0
(x - 9)(x² + 2) = 0
(x - 9)(x - √2)(x + √2) = 0
x - 9 = 0 ∨ x - √2 = 0 ∨ x + √2 = 0
x = 9 ∨ x = √2 ∨ x = - √2
x = { - √2 , √2 , 9 }
c)
x/(x - 1) = (x + 2)/x
założenie:
x - 1 ≠ 0 ∧ x ≠ 0
x ≠ 1 ∧ x ≠ 0
D: x ∈ R\{0 , 1 }
x * x = (x - 1)(x + 2)
x² = x² - x + 2x - 2
x² = x² + x - 2
x² - x² - x = - 2
- x = - 2 | * (- 1)
x = 2
∨ - znaczy "lub"
∧ - znaczy "i"