Odpowiedź:
a) ∫ ( x³ + 3 x - 1 ) dx = ∫ x³ dx + 3 ∫ x dx - ∫ dx = [tex]\frac{1}{4} x^4 + 3*\frac{1}{2} x^2 - x + C = \frac{1}{4} x^4 + \frac{3}{2} x^{2} - x + C[/tex]
b ) ∫ ( x² - 1 )² dx = ∫ ( [tex]x^4 -2 x^{2} + 1) dx =[/tex] ∫ [tex]x^4 dx - 2[/tex] ∫ x² dx + ∫ dx =
= [tex]\frac{1}{5} x^5-2*\frac{1}{3} x^3 + x + C = \frac{1}{5} x^5 - \frac{2}{3} x^3 + x + C[/tex]
c ) ∫ ( [tex]\sqrt{x} - \sqrt{2x} ) dx =[/tex] ∫ [tex]x^{1/2} dx - \sqrt{2} x^{1/2} dx =[/tex] [tex]\frac{x^{3/2}}{3/2} - \sqrt{2} *\frac{x^{3/2}}{3/2} + C[/tex]
Szczegółowe wyjaśnienie:
∫ [tex]x^\alpha = \frac{x^{\alpha +1}}{\alpha +1}[/tex] + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a) ∫ ( x³ + 3 x - 1 ) dx = ∫ x³ dx + 3 ∫ x dx - ∫ dx = [tex]\frac{1}{4} x^4 + 3*\frac{1}{2} x^2 - x + C = \frac{1}{4} x^4 + \frac{3}{2} x^{2} - x + C[/tex]
b ) ∫ ( x² - 1 )² dx = ∫ ( [tex]x^4 -2 x^{2} + 1) dx =[/tex] ∫ [tex]x^4 dx - 2[/tex] ∫ x² dx + ∫ dx =
= [tex]\frac{1}{5} x^5-2*\frac{1}{3} x^3 + x + C = \frac{1}{5} x^5 - \frac{2}{3} x^3 + x + C[/tex]
c ) ∫ ( [tex]\sqrt{x} - \sqrt{2x} ) dx =[/tex] ∫ [tex]x^{1/2} dx - \sqrt{2} x^{1/2} dx =[/tex] [tex]\frac{x^{3/2}}{3/2} - \sqrt{2} *\frac{x^{3/2}}{3/2} + C[/tex]
Szczegółowe wyjaśnienie:
∫ [tex]x^\alpha = \frac{x^{\alpha +1}}{\alpha +1}[/tex] + C