Odpowiedź:
c = I AB I = 6 - ( -2) = 8
---------------------------------
h = 4 - (-2) = 6
PoleΔ P = 0,5*8*6 = 24
b = I AC I
b² = ( 4 - (-2))² + ( 4 - 6)² = 6² + ( - 2)² = 36 + 4 = 40 = 4*10
b = 2 [tex]\sqrt{10}[/tex]
----------------
a = I BC I
a² = ( 4 - (-2))² + ( 4 - (-2))² = 36 + 36 = 36*2
a = 6 √2
-------------------
więc
P = [tex]\frac{a*b*c}{4 R}[/tex] ⇒
R = [tex]\frac{a*b*c}{4 P} =[/tex] [tex]\frac{6\sqrt{2}*2\sqrt{10} *8 }{4*24} = 2\sqrt{5}[/tex]
==============================
y = 2 - symetralna boku AB
S = ( x , 2)
I SB I = I SC I
( - 2 - x)² + ( - 2 - 2)² = ( 4 - x)² + ( 4 - 2)²
4 + 4 x + x² + 16 = 16 - 8 x + x² + 4
4 x = - 8 x
x = 0
S = ( 0, 2)
Równanie okręgu
x² + ( y - 2)² = ( 2√5)²
x² + ( y - 2)² = 20
=====================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
c = I AB I = 6 - ( -2) = 8
---------------------------------
h = 4 - (-2) = 6
PoleΔ P = 0,5*8*6 = 24
b = I AC I
b² = ( 4 - (-2))² + ( 4 - 6)² = 6² + ( - 2)² = 36 + 4 = 40 = 4*10
b = 2 [tex]\sqrt{10}[/tex]
----------------
a = I BC I
a² = ( 4 - (-2))² + ( 4 - (-2))² = 36 + 36 = 36*2
a = 6 √2
-------------------
więc
P = [tex]\frac{a*b*c}{4 R}[/tex] ⇒
R = [tex]\frac{a*b*c}{4 P} =[/tex] [tex]\frac{6\sqrt{2}*2\sqrt{10} *8 }{4*24} = 2\sqrt{5}[/tex]
==============================
y = 2 - symetralna boku AB
S = ( x , 2)
I SB I = I SC I
( - 2 - x)² + ( - 2 - 2)² = ( 4 - x)² + ( 4 - 2)²
4 + 4 x + x² + 16 = 16 - 8 x + x² + 4
4 x = - 8 x
x = 0
S = ( 0, 2)
Równanie okręgu
x² + ( y - 2)² = ( 2√5)²
x² + ( y - 2)² = 20
=====================
Szczegółowe wyjaśnienie: