Explicación paso a paso:
[tex] \sqrt[5]{5x + 2} = - 3 \times {7}^{0} \\ \sqrt[5]{5x + 2} = - 3 \times 1 \\ ( \sqrt[5]{5x + 2} ) ^{5} = ( - 3) ^{5} \\ 5x + 2 = - 243 \\ 5x = - 243 - 2 \\ 5x = - 245 \\ x = - \frac{245}{5} \\ x = - 49[/tex]
VERIFICANDO
[tex] \sqrt[5]{5( - 49) + 2} = - 3 \\ \sqrt[5]{ - 245 + 2} = - 3 \\ \sqrt[5]{ - 243} = - 3 \\ - 3 = - 3[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
[tex] \sqrt[5]{5x + 2} = - 3 \times {7}^{0} \\ \sqrt[5]{5x + 2} = - 3 \times 1 \\ ( \sqrt[5]{5x + 2} ) ^{5} = ( - 3) ^{5} \\ 5x + 2 = - 243 \\ 5x = - 243 - 2 \\ 5x = - 245 \\ x = - \frac{245}{5} \\ x = - 49[/tex]
VERIFICANDO
[tex] \sqrt[5]{5( - 49) + 2} = - 3 \\ \sqrt[5]{ - 245 + 2} = - 3 \\ \sqrt[5]{ - 243} = - 3 \\ - 3 = - 3[/tex]