a) [tex]4^{x+1}=\frac{\left(\left(4^2\right)^3\right)^0\cdot \:4^2}{5-\left(4^9\right)^0}[/tex]
Aplicamos las leyes de los exponentes
[tex]x+1=1[/tex]
[tex]x+1=1:x=0[/tex]
[tex]\boxed{x=0}[/tex]
b) [tex]\frac{\left(\left(8\right)^2\right)^3\left(\left(\left(8\right)^8\right)^3\right)^0\sqrt{64}}{\sqrt[3]{512}}=8^x[/tex]
Leyes de los exponentes
[tex]6=x[/tex]
Intercambiamos los lados: [tex]6=x:x=6[/tex]
[tex]\boxed{x=6}[/tex]
[tex]Buena\:suerte\:con\:tus\:tareas\::ProfeAndresFelipe :)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
RESOLVER:
a) [tex]4^{x+1}=\frac{\left(\left(4^2\right)^3\right)^0\cdot \:4^2}{5-\left(4^9\right)^0}[/tex]
Aplicamos las leyes de los exponentes
[tex]x+1=1[/tex]
[tex]x+1=1:x=0[/tex]
[tex]\boxed{x=0}[/tex]
b) [tex]\frac{\left(\left(8\right)^2\right)^3\left(\left(\left(8\right)^8\right)^3\right)^0\sqrt{64}}{\sqrt[3]{512}}=8^x[/tex]
Leyes de los exponentes
[tex]6=x[/tex]
Intercambiamos los lados: [tex]6=x:x=6[/tex]
[tex]\boxed{x=6}[/tex]
[tex]Buena\:suerte\:con\:tus\:tareas\::ProfeAndresFelipe :)[/tex]